
TIP Query Language

IP-627

Draft 2.5 - Confidential

September 2004

This edition applies to TIP Studio 2.5 and revision levels of TIP Studio 2.5
until otherwise indicated in a new edition. Publications can be requested
from the address given below.

Inglenet Business Solutions Inc reserves the right to modify or revise this
document without notice. Except where a Software Usage Agreement has
been executed, no contractual obligation between Inglenet Business
Solutions Inc and the recipient is either expressed or implied.

It is agreed and understood that the information contained herein is
Proprietary and Confidential and that the recipient shall take all
necessary precautions to ensure the confidentiality thereof.

If you have a license agreement for TIP Studio or TIP/ix with Inglenet
Business Solutions Inc, you may make copies of this documentation for
internal use. Otherwise, you may not copy or transmit this document, in
whole or in part, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of
Inglenet Business Solutions Inc.

Inglenet Business Solutions Inc

Toll Free: 1-800-387-9391
Website: http://www.Inglenet.com
Help Desk: HelpDesk@Inglenet.com

TIP Studio, TIP/ix, and TIP/30, and are registered trade marks of Inglenet
Business Solutions Inc:

This documentation occasionally makes reference to the products of
other corporations. These product names may be trade marks, registered
or otherwise, or service marks of these corporations. Where this is the
case, they are hereby acknowledged as such by Inglenet Business
Solutions Inc.

© Inglenet Business Solutions Inc, 1994-2004

TQL - TIP Query Language

9-Jan-2004 Draft 2.5 - Confidential i

Contents

TQL - TIP Query Language ...1
Introduction ... 1
TQL Components.. 1

Query Language.. 1
Development Environment .. 1
Runtime Interpreter ... 2

Porting Your Programs to TQL.. 2
General TQL Changes .. 2
Language Definition Changes... 3
cvttql - TIP/30 to TQL Converter ... 4
Required Conversions... 5
Running the Converter .. 6
Importing TQL Applications into TQL 7
Saved Command File Conversion....................................... 8

TQLCC - TQL Compiler ...9
Reserved Words.. 9
COPY Statement ... 11
Fields.. 12

Ambiguous Field References .. 13
TQL Expressions .. 15
File Definition .. 17
Record Definition.. 19
Group Items and TQL... 21
ALLOW: Changing Fields .. 21
ALLOW: Exporting Fields .. 23
ALLOW NULL: Fields.. 24
ALLOW: GO (Auto Update) .. 25
Hidden Fields... 25
MUST ADD: Fields .. 26
Preventing Use of Run-time Commands........................ 27
Record Selection - ID IS ... 28
Key Prefix... 28
VERIFY: Fields .. 30
System Fields.. 31

TIP Query Language

ii Draft 2.5 - Confidential IP-627

TQL Program Structure ..33
IDENTIFICATION DIVISION... 34
DATA DIVISION.. 36
WORKING STORAGE SECTION..................................... 37
TQL Statements .. 38
DECLARATIVES SECTION.. 41
DISPLAY DIVISION .. 48
REPORT DIVISION... 55
Report Heading and Footings ... 63
Control Breaks... 64
TQL Execution Cycle... 65

TQL Interface to DMS..66
SCHEMA Definition... 67
TQL/DMS Programming.. 67
TQL/DMS: Currency Considerations................................. 73
Runtime Database Errors.. 76

TQLRUN - TQL Runtime Interpreter 78
TQLRUN Features ...78
Function Keys..78
TQL Program Execution...79
Multiple TQL Commands..81
AD HOC Modifiers ...82

BY.. 82
FROM.. 83
GO... 83
IF ... 84
INTO.. 84
key-value... 85
MOVE.. 86
ON... 87
SORT... 87
SUM... 89
TO.. 89
WHERE... 90
ADHOC Commands.. 91
Using a Predefined Display... 91
ADD Record .. 93
CHANGE Data .. 93
CLOSE TQL Program ... 93
COUNT Records ... 94

TQL - TIP Query Language

9-Jan-2004 Draft 2.5 - Confidential iii

DELETE Record.. 94
DROP Selection .. 95
END TQL Program.. 96
ENTER Several Records... 96
EXECUTE A Saved Command ... 97
EXPORT Data... 97
Free Format LIST.. 99
Display MORE Data .. 100
MOVE Field or Value... 101
Display NEXT Screen of Data... 101
OPEN New Program... 101
Display PREV Screen of Data... 101
PRINT Predefined Report ... 102
Free Format PRINT... 102
RECALL a Command.. 104
RELEASE a Selection... 104
SAVE a Command .. 105
SELECT Subset Of A File ... 106
SHOW Field Names and Selects 108
SORT Records .. 109
SUM Fields.. 109
UPDATE Record ... 111
Direct Execution of TQL Programs.................................. 112

TQLMON - TQL Development Environment........... 115
TQLMON Features .. 115
TQL Development Cycle .. 115
Editing.. 116
Compiling... 116
Templates and Program/Record Cloning..................... 117
Concurrency Control .. 118
TQLMON Command line Options.................................. 118
Command Summary... 119
TQL Commands .. 121

Command Summary ... 121
AF - Add File ... 123
AS - Add Schema.. 123
C, CF, CP, CPT, CT - Compile From External Source ... 124
CD - Change Current Working Directory......................... 125
COMP - Compile Existing Records and/or Programs 125

TIP Query Language

iv Draft 2.5 - Confidential IP-627

DEL - Delete File or Record .. 126
DP - Delete Program... 126
DPT, DT - Delete Program or Record Template............. 127
DS - Delete Schema.. 127
E - End TQLMON Program... 128
EDIT - Edit a Source File... 128
HELP - Display Help Information..................................... 128
L - List File/Record .. 129
LP - List Program .. 129
LPT, LT - List Program or Record Template................... 129
M - Make Screen Formats... 130
N - Define New Record ... 131
NF - Define New File... 132
NP - Define New Program... 133
NPT - Define Program Template..................................... 134
NT - Define Record Template ... 135
O - Open Program... 135
P - Print File/Record.. 136
PP - Print Program .. 136
PPT, PT - Print Program or Record Template................. 137
RUN, R - Run TQL Program ... 137
S - Summarize File/Record ... 138
SMFILE - Invoke SMFILE.. 138
SP - Summarize Programs.. 139
SPT, ST - Summarize Program or Record Templates.... 139
SS - Summarize Schemas .. 140
TFD - Invoke TFD.. 140
U - Update Record Definition .. 141
UC - Update Control Record ... 141
UF - Update File Definition.. 146
UP - Update Program Definition...................................... 146
UPT, UT - Update Program or Record Template............ 147
W - Write File/Record Definition to Source File............... 147
WP - Write Program Source to File................................. 148
WPT, WT - Write Program/Record Template to Source File
... 149
XF/XFC - Cross Reference Files..................................... 150
XP - Cross Reference Programs..................................... 150
XR/XRC - Cross Reference Records 151

TQLADMIN - TQL System Administration.............. 152
TQLADMIN Features ...152

TQL - TIP Query Language

9-Jan-2004 Draft 2.5 - Confidential v

Initializing the TQL Control File..................................... 152
Checking the TQL Control File...................................... 154
Rebuilding the TQL Control File.................................... 155
Cleaning the TQL Control File....................................... 156
Clearing Edit Locks .. 157
Setting Options in TQLADMIN....................................... 158
Converting Saved Command Files 159
Exiting TQLADMIN.. 160

TQLSVE - TQL Saved File Maintenance................. 161
Installing TQLSVE... 161
Running TQLSVE.. 161

TQL Example Programs.. 163
Inventory/Order Example... 163
ORD Program Description ... 166
INVOICE Program ... 167

ANSI COCOL-85 Specifications.............................. 170
Qualification .. 170
Reference Modification .. 170

Function... 170
General Format ... 170
Syntax Rules ... 171
General Rules ... 171
Identifier... 172

Index .. 173

TQL - TIP Query Language

9-Jan-2004 Draft 2.5 - Confidential 1

TQL - TIP Query Language

Introduction
TQL is an interactive facility that allows you to create flexible and powerful
query programs. TQL programs can perform the following functions on
on-line files:

 display data
 modify data
 enter data
 generate reports
TQL accesses files indexed and direct access (relative) files as well as
databases accessible through TIP/dbi.

TQL Components
TQL is an integrated environment. It combines three main components
into a system to provide data access services.

TQL maintains control of the system using a central control file and the
operating system directory structure. It is important that all manipulation
of the TQL system is done using the utilities provided for that purpose.

Query Language

The query language is based on COBOL syntax to provide ease of
programming and a small learning curve. While the language follows the
syntax of COBOL it provides greater leverage when creating programs.
The semantics of a number of statements go beyond the basics of
COBOL.

Development Environment

The development environment is provided by the utility TQLMON.
TQLMON is used for creating all the definitions in the system and is the
main utility for manipulating the TQL system.

See the TQLMON section for details on using TQLMON to create TQL
applications.

TIP Query Language

2 Draft 2.5 - Confidential IP-627

Runtime Interpreter

Once a TQL application has been created it is run by the interpreter
TQLRUN. While running the program the end-user can view displays or
reports programmed by the developer of the TQL application.

In addition, ad hoc queries may be executed to request specific data not
covered by the provided displays or reports. These queries allow the end-
user to view the data in a manner not anticipated by the programmer or to
use the provided displays and reports with confinement parameters.

See the TQLRUN section for details on running TQL applications and the
ad hoc command set.

Porting Your Programs to TQL
This section outlines the major differences between TIP/30 TQL and TQL
and the procedure for importing TIP/30 TQL applications into TQL.

General TQL Changes

TQL no longer uses one control file for maintaining the TQL system.
Source code, pseudo-code and symbol tables are all kept in UNIX
directories and rely on the usual UNIX security for access. Do not access
these directories directly. Always use the TQLMON utility to maintain the
TQL system.

The source for programs and records is no longer kept in edit buffers.
Under TIP/30 TQL, the E command or CANCEL out of the editor resulted
in the source being compiled. TIP maintains the source separately and
compilation is based upon the modification date of the source file. To
compile your source, you must write out the source before exiting the
editor. If using FSE as your editor, use the WZ command without any
other parameters. A description of FSE can be found in TIP Utilities
manual.

If you end an edit session without saving the source, the posted source
will not be compiled. TIP will save the edit buffer, with your changes, for
the next time you update that source file.

If you will be going through multiple edit-compile cycles for a module, use
the WE command to end the editor FSE. This will write and compile the
source and save an edit buffer, which will load faster for the next edit
session.

TQL has some default source file extensions that you may see when
editing. They are as follows:

TQL - TIP Query Language

9-Jan-2004 Draft 2.5 - Confidential 3

Extension Description

<filename>xxx.trd A TQL record definition

<filename>xxx.tpd A TQL program definition

<filename>xxx.tfd A TQL file definition (not associated with
the TIP TFD utility)

Language Definition Changes

Most of the changes involve the TQL language and are generally limited
to program definition. Use the cvttql conversion program to convert your
TIP/30 TQL programs to TIP. Any new programs you write must conform
to the TQL program definition standards.

If you use any of the new features in TQL you may find that this will
restrict porting TQL code back to OS/3. To ensure that you can move
your TQL code back to OS/3, avoid the following items:

 MOVE/ADD/SUBTRACT with multiple receiving items
 MULTIPLY/DIVIDE statements
 NEXT-LOOP/BREAK statements
 Reference modification
 Subscripting with more than two subscripts
 Qualification
 Using files with more than five keys
 PUT
 SET
 Level 88 usage
 Level 66 usage
 Complex statements are delimited with { ... } pairs or BEGIN ... END

pairs. The TIP/30 TQL statement delimiters (...) are no longer
supported.

The array range specifier ":" has been replaced with "..". This change
allows you to use COBOL style reference modification. See ANSI
COBOL-85 Specifications for information regarding reference
modification.

Statements such as MOVE, ADD or SUBTRACT that have a GIVING or
TO clause now accept multiple receiving items.

For example:

MOVE 1 TO ITEM-1 ITEM-2 ITEM-3

will move 1 into ITEM-1, ITEM-2 and ITEM-3

TIP Query Language

4 Draft 2.5 - Confidential IP-627

The major side effect of this is that code may work differently under TQL.
See the cvttql section following for details.

TIP/30 TQL treated group names used as display/report items differently
depending on whether the items exist in a report or display:

When used in a report they were treated as alphanumeric (PICTURE X)
items.

In displays, they meant the short form of all the non-FILLER field names
in the group.

Support for this construct depends on a configuration parameter (see UC
- Update Control Record) which defaults to supporting the construct.
When support has been disabled, use FIELDS/MEMBERS OF/IN <grp-
name> to achieve the same effect.

TQL is case insensitive except in two cases:

Any UNIX file names are case sensitive.

Ad hoc literals are converted to uppercase unless an "l" or "L" prefixes the
literal (that is, L"Dont convert").

cvttql - TIP/30 to TQL Converter

TQL source files from OS/3 must be run through a converter before
attempting to install them into a TQL system. This is required because of
changes to the TQL language that would cause some programs to either
work differently or not compile.

Syntax

cvttql [-lpv] -o directory file(s)

Where:

-l Convert literals to the correct type.

-p Source code does not have COBOL sequence numbers
(i.e. column 1 is really column 7)

-v Verbose output. Shows the files being converted and
success or failure of the conversion

-o directory
The directory where the converted source will be put. This
must be specified. If you want to overwrite the original
source specify a directory of "./".

file(s) The list of files to be converted.

TQL - TIP Query Language

9-Jan-2004 Draft 2.5 - Confidential 5

Required Conversions

The following is a list of the conversions made by the converter:

Reserved word conversion.
The TQL reserved word list now includes the full set of
COBOL reserved words which invalidates the names of
some data items. Data names that are reserved words are
converted by changing the last letter of the name to the
character 'Z'. For instance, the name CLASS would
become CLASZ.

Complex statement delimiters
Complex statements were delimited by either (...) pairs or
BEGIN ... END. (...) pairs are replaced by { ... } pairs.
BEGIN ... END pairs are left alone.

Literal conversion
If requested, literals that do not match the storage type will
be converted to the correct type. Because this has the
potential to change the meaning of the data this
conversion is not done automatically.

Delimiting multiple receiving items
Statements such as MOVE and ADD now accept multiple
receiving items in keeping with the COBOL syntax. The
following code will now work differently under TQL.

MOVE "A" TO FLD-1
FLD-2 FLD-3

Instead of moving "A” to FLD-1 and outputting FLD-2 and
FLD-3, it will attempt to move "A" to FLD-1, FLD-2 and
FLD-3. The PUT verb has been introduced to handle this
case.
The converter changes the preceding code to:

MOVE "A" TO FLD-1
PUT FLD-2 FLD-3

Note that no special handling is required for the following:
MOVE "A" TO FLD-1
MOVE "B" TO FLD-2

Data name aliases converted to level 66's
When defining a data item any data name entered as an
alias is converted to a level 66.

05 FLD-1 FLD-ALIAS-1 FLD-ALIAS-2
PIC XXX.

In the following example, FLD-1 could also be referred to
as FLD-ALIAS-1 or FLD-ALIAS-2. This is no longer
supported and is replaced by level 66 support. The above
code is changed to:

TIP Query Language

6 Draft 2.5 - Confidential IP-627

05 FLD-1 PIC XXX.
66 FLD-ALIAS-1 RENAMES FLD1.
66 FLD-ALIAS-2 RENAMES FLD1.

Level 66's terminate the definition of the 01 group being
defined.

Insert DO before loop counts
DO was optional when specifying a loop construct. The
following will work differently under TQL.

PUT FLD-1 FLD-2 3 { FLD-3 }

This will output FLD-1, FLD-2, the number 3 and FLD-3
instead of putting 3 FLD-3's. This is converted to

PUT FLD-1 FLD-2 DO 3 { FLD-3 }

Running the Converter

This section outlines the steps involved when converting TQL source. To
properly convert the programs you must have access to symbol tables for
the record definitions used. This is required because some conditional
expressions that are followed by a complex statement groups delimited
by (...) pairs are ambiguous without information about any data names
used in the conditional expression.

The first step is to submit all the record definitions to the converter. If the
source files have been extracted off of a tape using the armlibs utility
then the record definitions have the extension ".trd".

Once you convert the record definitions you have two choices:

 you may convert the programs immediately, or
 convert them after you have installed the records into the TQL

system.
When converting programs the converter looks at the current directory
first to find any required symbol tables. If it is unable to locate them, it
then looks in the TQL system. If there is still no match, an error is
reported and the program cannot be converted. If you install the records
into the TQL system before converting the programs then the symbol
tables created in the directory where the converter was run may be
deleted. Symbol tables are files that have a ".sym" extension.

Submit the programs to the converter. Programs have the extension ".tpd"
if extracted from tape via armlibs.

When all the source has been converted you may use the TQLMON
commands C and CP to install the source into the TQL system. See the
TQLMON section for details.

The symbol tables in the directory where the conversion was performed
may now be deleted.

TQL - TIP Query Language

9-Jan-2004 Draft 2.5 - Confidential 7

Example:

cvttql -v -o ./ *.trd
*> convert all records overwriting the
*> original source with the converted
*> source.
cvttql -v -o cvtd *.tpd
*> convert all programs putting the
*> converted source into the directory
*> cvtd

Importing TQL Applications into TQL

This section describes the recommended procedure for importing TQL
applications into the TQL system. This assumes that the source has been
processed by the converter cvttql.

The following steps illustrate importing two provided TQL applications,
TQLSVE and TQLTSP. TQLSVE is the TQLRUN Saved Command file
maintenance program and TQLTSP is the TQL version of TSP (TIP
Sample Program) which shows some basic uses of TQL.

Details on the AF, C, and CP commands mentioned may be found in the
TQLMON Commands section.

Step 1:

Start TQLMON

TIP?►TQLMON

Step 2:

Define the files to TQL.

AF TQLSVE
AF TSPFILE

Step 3:

Define the records to TQL.

C SVEREC.trd
C TQLTSPR.trd

Step 4:

Define the program to TQL

CP TQLSVE.tpd
CP TQLTSP.tpd

TIP Query Language

8 Draft 2.5 - Confidential IP-627

Step 5:

Exit from TQLMON. Import the required screen formats to TIP using the
msgar utility. This step is usually not required because the screen
formats are already available to TIP.

At this point the TQL programs TQLSVE and TQLTSP are installed in the
TQL system and available for execution.

Saved Command File Conversion

This section outlines the step required to move the saved command file
TQL$SVE from OS/3 to UNIX. A conversion is necessary because
TQLRUN has a larger command line and therefore the record size for the
saved commands must be adjusted.

The structure of the file is the same except that the record length for the
TQL saved command file is 486 instead of 256.

Create a 9-track tape using the OS/3 data utilities. The input record length
is 256 and the output record length is 486. The saved command file is
called TQL$SVE.

Use fcsload to create the UNIX file tql$sve. The copybook to supply to
fcsload is $TIPROOT/src/SVEREC.cpy. This copybook is a modified
version of the TQL saved command file record definition SVEREC.trd.

See the fcsload documentation for details.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 9

TQLCC - TQL Compiler
This chapter describes the rules of syntax for the specification of FILES,
RECORDS, and PROGRAMS in the TIP Query Language.

Reserved Words
The table that follows contains words that have reserved meaning to both
TQL and COBOL-85. The reserved words may not be used outside of the
reserved meaning in a TQL program.

TQL RESERVED WORDS

ACCEPT, ACCESS, ADD, ADVANCING, AFTER, ALL, ALLOW,
ALLOWED, ALPHABETIC, ALPHABETIC-LOWER,
ALPHABETIC-UPPER, ALPHANUMERIC, ALPHANUMERIC-
EDITED, ALSO, ALTER, AND, ANY, APPLY, ARE, AREA,
AREAS, ASC. ASCENDING, ASSIGN, AT, AUTHOR,
AUTHOR$

BEFORE, BEGIN, BEGINS, BINARY, BLANK, BLOCK,
BOTTOM, BREAK, BY

CALC, CALL, CANCEL, CASE, CASEOF, CD, CF, CH,
CHANGE, CHANGED, CHARACTER, CHARACTERS, CLASS,
CLOCK-UNITS, CLOSE, CODE, CODE-SET, COLLATING,
COLUMN, COMMA, COMMIT, COMMON, COMMUNICATION,
COMP, COMP-1, COMP-2, COMP-3, COMP-4, COMP-X,
COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-
2, COMPUTATIONAL-3, COMPUTATIONAL-4,
COMPUTATIONAL-X, COMPUTE, CONFIGURATION,
CONTAIN, CONTAINS, CONTENT, CONTINUE, CONTROL,
CONTROLS, CONVERTING, COPY, CORR,
CORRESPONDING, COUNT, CURRENCY, CURRENT

DATA, DATE, DATE-COMPILED, DATE-WRITTEN, DAY, DAY-
OF-WEEK, DD$, DE, DEBUG, DEBUG-CONTENTS, DEBUG-
ITEM, DEBUG-LINE, DEBUG-NAME, DEBUG-SUB-1, DEBUG-
SUB-2, DEBUG-SUB-3, DEBUGGING, DECIMAL-POINT,
DECLARATIVE, DECLARATIVES, DEFAULT, DELETE,
DELIMITED, DELIMITER, DEPENDING, DESC, DESC$,
DESCENDING, DESTINATION, DETAIL, DIRECT, DISABLE,
DISPLAY, DISPLAY1, DIVIDE, DIVISION, DMS, DMY$, DO,
DOES, DOWN, DROP, DUPLICATES, DYNAMIC

EDIT$, EGI, ELSE, EMI, EMPTY, ENABLE, END, END-
ACCEPT, END-ADD, END-CALL, END-COMPUTE, END-
DELETE, END-DISPLAY, END-DIVIDE, END-EVALUATE,
END-IF, END-MULTIPLY, END-OF-PAGE, END-ON, END-
PERFORM, END-READ, END-RECEIVE, END-RETURN, END-
REWRITE, END-SEARCH, END-START, END-STRING, END-

TIP Query Language

10 Draft 2.5 - Confidential IP-627

SUBTRACT, END-UNSTRING, END-WRITE, ENTER, ENTRY,
ENVIRONMENT, EOP, EQ, EQUAL, EQUALS, ERRCODE$,
ERROR, ESI, EVALUATE, EVERY, EXCEPTION, EXECUTE,
EXHIBIT, EXIT, EXPORT, EXTEND, EXTERNAL

FALSE, FD, FETCH, FIELDS, FILE, FILE-CONTROL, FILE-
SERVER, FILLER, FINAL, FIRST, FOOTING, FOR, FROM

GE, GENERATE, GET, GIVING, GLOBAL, GO, GOTO,
GREATER, GROUP, GROUPS, GT

HEADING, HELP, HH$, HHMM$, HIDDEN, HIGH-VALUE,
HIGH-VALUES, HOME$

I-O, I-O-CONTROL, ID, IDENTIFICATION, IDENTIFIER, IF,
IFDMS, IN, INDEX, INDEXED, INDICATE, INITIAL, INITIALIZE,
INITIATE, INPUT, INPUT-OUTPUT, INSERT, INSPECT,
INSTALLATION, INTO, INVALID, INVOKE, IS

JUL$, JUST, JUSTIFIED

KEY

LABEL, LAST, LE, LEADING, LEFT, LESS, LEVEL$, LIMIT,
LIMITS, LINAGE, LINAGE-COUNTER, LINE, LINE$, LINE-
COUNTER, LINES, LINKAGE, LIST, LOCATION, LOCK, LOW-
VALUE, LOW-VALUES, LPP$, LT

MAX, MAXREAD, MEMBER, MEMBERS, MEMORY, MERGE,
MESSAGE, MIN, MIN$, MODE, MODIFIED, MODIFY,
MODULES, MON$, MORE$, MOVE, MULTIPLE, MULTIPLY,
MUST

NAMED, NATIVE, NE, NEGATIVE, NEXT, NEXT-LOOP, NL$,
NO, NOT, NULL, NUMBER, NUMERIC, NUMERIC-EDITED

OBJECT-COMPUTER, OCCURS, OF, OFF, OMITTED, ON,
ONLY, OPEN, OPTIONAL, OR, ORDER, ORGANIZATION,
OTHER, OUTPUT, OVERFLOW, OWNER

PACKED-DECIMAL, PADDING, PAGE, PAGE$, PAGE-
COUNTER, PARAGRAPH, PASSWORD, PERFORM, PF, PH,
PIC, PICTURE, PLUS, POINT, POINTER, POSITION,
POSITIVE, PREFIX, PREV, PRINT, PRINTING, PRIOR,
PRIORITY, PROCEDURE, PROCEDURES, PROCEED,
PROGRAM, PROGRAM$, PROGRAM-ID, PROTECT, PURGE,
PUT

QUEUE, QUOTE, QUOTES

RANDOM, RANGE, RD, READ, READY, RECALL, RECEIVE,
RECORD, RECORDS, REDEFINES, REEL, REFERENCE,
REFERENCES, RELATIVE, RELEASE, REMAINDER,
REMOVAL, REMOVE, RENAMES, REPLACE, REPLACING,
REPORT, REPORTING, REPORTS, RERUN, RESERVE,
RESET, RETURN, REVERSED, REWIND, REWRITE, RF, RH,
RIGHT, ROUNDED, RUN

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 11

SAME, SAVE, SD, SEARCH, SECTION, SECURITY,
SEGMENT, SEGMENT-LIMIT, SELECT, SELECTIVE, SEND,
SENTENCE, SEPARATE, SEQUENCE, SEQUENTIAL, SET,
SHOW, SIGN, SITE$, SIZE, SKIP$, SORT, SORTED, SORT-
FILE-SIZE, SORT-MERGE, SORT-MODE-SIZE, SOURCE,
SOURCE-COMPUTER, SPACE, SPACES, SPECIAL-NAMES,
SPECIFIC, STANDARD, STANDARD-1, STANDARD-2,
START, STATUS, STOP, STORE, STRING, STRUCTURE,
SUB-QUEUE-1, SUB-QUEUE-2, SUB-QUEUE-3, SUBTRACT,
SUM, SUPPRESS, SYMBOLIC, SYNC, SYNCHRONIZED,
SYSTEM

TAB$, TABLE, TALLYING, TAPE, TERMINAL, TERMINATE,
TEST, TEXT, THAN, THEN, THROUGH, THRU, TID$, TIME,
TIME$, TIMES, TO, TOP, TRACE, TRAILING, TRANSFORM,
TRUE, TYPE

UID$, UNIT, UNSTRING, UNTIL, UP, UPDATE, UPON,
USAGE, USE, USING

VALUE, VALUES, VARYING, VERIFY, VIA

WHEN, WHEN-COMPILED, WHERE, WHILE, WITH, WORDS,
WORKING-STORAGE, WRITE

YMD$, YY$

ZERO, ZEROES, ZEROS

COPY Statement

The COPY statement allows you to specify the name of the file from
which the compiler reads the TQL source when the COPY statement is
executed.

Syntax:

COPY text-name|external-filename
[OF|IN library-name|library-name-literal]

Where:

text-name
A unique external file name which cannot contain a "/"
character or possess an extension.

external-filename
A UNIX file name which must be contained by quotes (" ")
and may contain a "/" character or possess an extension.

library-name
may be one of:

TIP Query Language

12 Draft 2.5 - Confidential IP-627

the name of an environment variable containing a directory
name in which the copybook resides. The variable can also
be defined as "DD_library-name".

a Directory in the current working Directory.

library-name-literal
A UNIX Directory PATH. Must be in quotes and may
contain a "/" character and extension.
Note: The text-name may also reside in a directory
specified in the environment variable COBCPY. COBCPY
is a colon-delimited list of directories.
The order of qualification for these possibilities is:

If no library is specified: text-name, text-name.cbl, text-
name.cpy

If a library is specified: library/text-name, library/text-
name.cbl, library/text-name.cpy

If a library is specified and an environment variable named
library is set, for example, $library/text, etc. where $library
is the contents of the environment variable.

If a library is specified and an environment variable named
library is set, for example, DD_library/text, etc. where
DD_library is the contents of the environment variable.

Each directory in $COBCPY (if set) is searched.

Fields
Fields may be defined in record layouts or in the (optional) working-
storage section of a TQL program. Fields are defined in a manner similar
to standard COBOL data division items.

Some special considerations exist for TQL programs:

 fields may be subscripted by enclosing the subscript value within
parentheses.

 an array may be defined to have up to seven dimensions (subscripts).
 a subscript may be a literal value, an expression, or another field

name.
TQL also supports COBOL 85 reference modification and qualification.
See ANSI COBOL-85 Specifications for a discussion of these concepts.

As a coding convenience, when a field name is used to implicitly output
the field in a pre-defined display or report, a range of items can be implied
by using a special notation:

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 13

Example:

05 AN-ARRAY OCCURS 10 TIMES.
10 AN-ITEM PIC X(8).
10 ANOTHER-ITEM PIC X(8).

The first 3 items could be output in a display or a report simply by using
the appropriate subscripts:

AN-ITEM (1) AN-ITEM (2) AN-ITEM (3)

Or, alternatively and more compactly, using a special range notation:

AN-ITEM (1..3)

Additional Considerations:

You may use qualified field names in TQL, for example:

05 FOO.
10 FOO-A.

05 FOO1.
10 FOO-A.

...

...
FOO-A OF FOO1 *> references FOO-A OF FOO1

TQL supports Scaled Numeric Fields placing a P (or place holder) in
PICTURE clauses. The numbers are processed and displayed as if the P
was an actual digit with a zero value. Whenever a value is stored into
these fields the number is adjusted so that the P digits are not stored in
the record. This is also how COBOL treats this number.

Example:
05 DOLLAR PICTURE S99999PPP.
05 SMALLNUM PICTURE VPPP999.

TQL will accept any unambiguous abbreviation wherever you specify a
data field name. TQL first searches for an exact match on the given field
name. If the match fails TQL performs a complete search of the symbol
table looking for the supplied name as any substring of a symbol. If only
one possible match is found the field name is known. When two or more
possible matches are found, TQL will display the following error message:

Ambiguous Field References

During the execution of a TQL program, TQL will also display all names
that match the search.

In the sample data file and sample TQL program the data field name CM-
DP-MGR may be referenced as simply MGR, CM-MACHINE may be
referenced as MACH or MACHINE.

TIP Query Language

14 Draft 2.5 - Confidential IP-627

This technique allows data processing to use data processing data field
names while an end user may omit prefixes and suffixes to enter more
meaningful data field names.

TQL does not display fields labelled as FILLER. See the syntax of field in
the DISPLAY DIVISION section of this manual.

TQL supports level 88 items (also known as condition names.) It follows
COBOL-85 syntax with COBOL-99 extensions.

The declaration syntax is:

88 condition-name-1
{ VALUE [IS]|VALUES [ARE]} literal-1
[{ THRU|THROUGH } literal-2]...
[WHEN [SET TO] FALSE literal-3].

When the 88 level is SET to FALSE it becomes literal-3.

Each literal must be a compatible value for condition-name-1.

A condition name may be moved to any compatible data item as long as
the condition name has only one value associated with it.

Condition names may not be reference-modified.

The verb SET in the TQL syntax provides for level 88 support. A condition
name can also be set to FALSE if a when false literal is specified:

Example:

05 FOO PICTURE X(4).
05 FOO-TOO PICTURE X(4).

88 FOO-88-1 VALUE "ABCD" "DEFG".
88 FOO-88-2 VALUE "TEST".
88 FOO-88-3 VALUE "ABCD"

WHEN FALSE "DCBA".

MOVE FOO-88-2 TO FOO
MOVE FOO-88-1 TO FOO
MOVE FOO-88-3 TO FOO

SET FOO-88-2 TO TRUE
SET FOO-88-1 TO TRUE
SET FOO-88-3 TO FALSE
SET FOO-88-2 TO FALSE

Notes:

 Moves "TEST" into FOO.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 15

 Not valid, multiple values in condition name.

 Not valid, multiple values.

 Moves "TEST" into FOO-TOO.

 Invalid multiple values.

 Moves "DCBA" into FOO-TOO.

 Invalid no FALSE literal.

TQL Expressions
TQL allows the programmer or run-time user to make use of arithmetic
and relational expressions. These expressions may be used either as part
of the TQL program proper or as part of a run-time command (example: in
the run-time "IF" command).

This section describes the syntax of the general TQL expression and
contains several example expressions.

Syntax:

field
value
expr OPER expr
expr CONNECTOR expr
NOT expr
(expr)

Where:

() The use of parentheses may be necessary to force a
specific order of evaluation of the expression or to nest
expressions.

If parentheses are not used, standard operator precedence
rules apply (multiplication and division before addition and
subtraction etc.).

field The name of a field that is defined in the TQL program.

A list of available field names can be found (at run-time) by
using the "SHOW" command (documented in a following
section).

value A numeric or character value (literal).

Numeric literals must be entered without any comma
separator characters.

TIP Query Language

16 Draft 2.5 - Confidential IP-627

Numeric literals may specify a leading or trailing sign and a
decimal place (if required).

Numeric values less than 1 must be entered with a leading
zero before the decimal; example: 0.35 not .35

OPER
A relational or arithmetic operator (arithmetic operators
may only be applied to numeric fields!).

TQL supports the operators listed in the following table.
Operator Alias Description

EQ = equal

NE < > not equal

GT > greater than

LT < less than

GE > = greater than or equal

LE < = less than or equal

BEGINS WITH = * begins with

DOES NOT BEGIN
WITH

= ! does not begin with

CONTAINS = : contains

DOES NOT
CONTAIN

does not contain

+ arithmetic addition

- arithmetic subtraction

* arithmetic multiplication

/ arithmetic division

% arithmetic remainder

The connectors support by TQL are as follows:

Connector Alias Description

AND & logical "and" function

OR | logical "or" function
(meaning either or both)

NOT "NOT" logical negative.

Example:

MOVE INVENTORY-COUNT - 1 TO WORK-COUNT.
IF (JOB-DESCRIPTION CONTAINS 'DEPUTY') AND SALARY > 25000
AND SALARY < = 50000

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 17

IF (NOT JOB-DESCRIPTION =: 'DEPUTY')
IF 0 = TOTAL-COUNT % 2

The field name "SALARY" had to be repeated for the comparison with
50000. This illustrates that TQL does not allow the subject of a
comparison to be omitted, as COBOL-85 does.

Additional Considerations:

Numeric values must be specified without comma separators. (example:
25000 rather than 25,000).

The remainder operator % involves an implied division; the result is the
remainder rather than the quotient.

The last example compares 0 with the remainder when TOTAL-COUNT is
divided by 2. If the remainder is zero, it implies that the field was evenly
divisible by 2.

The result of a relational operator (example: A >= B) is considered to be
(numeric) 1 if the result is TRUE and a (numeric) 0 if the result is FALSE.
Such implied numeric values may be used in further computations if
desired.

File Definition

The programmer must define all required on-line files to TQL using the
TIP TCM program SMFILE and the TQLMON AF or NF command. To
define currently existing host computer TIP/30 TQL files, you may wish to
create a source module containing information from the TIP/30 generation
parameters for the files. Alternately, the TQLMON command NF can be
used to manually enter the information for each file.

The source module may contain one or more FILE definitions. This
source module is then compiled by TQL (the compilation process will be
described in detail in a later section).

The syntax requirements are:

Syntax:

FILE lfn,filetype
[ACCESS=]
[BLKSIZE=]
[DELETE=]
[INDSIZE=]
KEYLEN=
KEYLOC=
KEY1=
...
KEY10=

TIP Query Language

18 Draft 2.5 - Confidential IP-627

[RECFORM=]
RECSIZE=
.

Entries marked with [] are not required by TQL, and may be omitted. A
required period ends the definition of each file.

Where:

Lfn
The Logical file name of the file (as defined in the TIP
catalogue).

Filetype
The type of file.

Choose one of ISAM, or DAM.

ACCESS=
Not required; ignored.

BLKSIZE=
Not required; ignored.

DELETE=
Not required; ignored.

INDSIZE=
Not required; ignored.

KEYLEN=
The length of the key for the file.
This keyword is normally used only when the file in
question has a single key.

KEYLOC=
The zero relative location of the key in the record. This
value is the number of bytes that precede the key.
Default=0.
KEYLEN and KEYLOC do not have to be specified if the
key information is provided by one or more of the keywords
KEY1= through KEY10=.

KEY1=(size,loc,NDUP,NCHG)
This keyword defines index 1.

The value "size" is the key length in bytes.

The value "loc" is the zero relative key location (the
number of bytes that precede the key).

Note: TIP does not allow the primary key of a MIRAM file
to change or have duplicates.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 19

KEY10=(size,loc,NDUP|DUP,CHG|NCHG)
This keyword defines index 10. A file can have up to ten
keys.

RECFORM=
Record format.

Choose either FIXBLK (fixed block) or VARBLK (variable
blocked). Default=FIXBLK.

Note: The first halfword of a variable length record is the
record length. This record length field is accessible by the
TQL program and the record definition must account for
these two bytes (a binary halfword).

When TQL is adding a variable length record, the record
length is set to the maximum record length

RECSIZE=n
The length of the records in the file.

The end of each file definition must be marked by a period following the
last keyword specification.

Other file definitions may follow in the same source module (if desired).

Additional Considerations:

Much of the information described above is not strictly necessary since
TQL uses the TIP file system (TIPFCS) to perform I/O to files. The KEY
information is critical however, to ensure that TQL is correctly specifying
key information when accessing files.

Using the NF and AF commands will ensure that the TQL file definition is
the same as the TIP definition.

Record Definition

The programmer has several methods of handling record layouts:

pre-compile the record definition and reference it by name in TQL
programs that need to access such records;

Use the COPY clause to include the record layout in the TQL programs
that access the record;

explicitly code the record definition in the TQL programs that access the
record.

The first method (pre-compilation) is the most efficient and is highly
recommended. Use of the COPY clause is clearly better than explicitly
coding the record layout. The latter two methods are inferior. Pre-

TIP Query Language

20 Draft 2.5 - Confidential IP-627

compilation ensures that all TQL programs use the same record layout
and reduces program compilation overhead.

The record definition follows standard COBOL record description
conventions with the following exceptions:

VALUE clauses are ignored.

COMPUTATIONAL-1 and COMPUTATIONAL-2 fields (short and long
format floating point) are not supported by TQL.

Level 77 items are ignored.

If the record layout is to be pre-compiled, the first statement of the source
must be the FOR clause (to be described) to associate the record layout
with an already defined FILE.

If the record layout is to be pre-compiled, the RECORD clause may be
specified to name the record. If no RECORD clause is specified the
record will be given the same name as the 01 level name. This 01 level
name will be truncated to eight characters.

In the second method, the record layout is included via a COPY clause or
is explicitly coded in the TQL program, it cannot have a FOR clause or a
RECORD clause.

Regardless of how the record definition is coded, the record layout may
contain and/or be followed by ALLOW CHANGE clauses, VERIFY
clauses, ID clauses, ALLOW DELETE clauses, ALLOW ADD clauses (to
be described in a following section).

Records are not allowed to change or be deleted at runtime unless such
permission is explicitly granted through the appropriate clauses.

Example:

[DECIMAL-POINT IS COMMA.]
[CURRENCY SIGN IS "$".]
FOR PAYFILE.
[RECORD PAYMST.]
01 PAYMST.
05 KEY.
10 DEPT PIC 99.
10 NUMB PIC 9(5) COMP-3.
05 NAME PIC X(20).
05 ADDRESS.
10 LINE-1 PIC X(20).
10 LINE-2 PIC X(20).
05 SALARY PIC 9(4)V99.
ID IS DEPT > 0.
ALLOW CHANGE ALL.
NO CHANGE DEPT NUMB.
VERIFY SALARY 6000 THRU 32000.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 21

Additional Considerations:

The definition of the key field is critical to the run-time operation of TQL.
The first definition of the key field(s) is taken as the way the key will be
entered by the run-time user when selecting records.

This can be a problem if the key is actually made up of several smaller
fields. For example, if the key is defined as three (3) small fields then any
key value must be entered at execution time as three separate items of
the correct type.

Numeric data is entered as a number, but alphanumeric data must be
entered in single quotes. If you prefer to enter the key data as one big
field but still want to reference the sub-fields then code the record layout
with one single field and then redefine it as the sub-fields. Since the
single field definition would appear first, TQL would expect the key to be
entered as a single data item at run time.

The specification of the currency sign and decimal point is comma must
appear before the FOR file statement.

Group Items and TQL

Group level items which are defined in a TQL record layout (or in the
working-storage section) are treated by TQL in the following manner:

when a group item is used in a DISPLAY, MOVE, IF, REPORT, LIST or
EXPORT command, TQL will interpret the group name as if it was a
picture X field of the size of the group.

To use group-name as a short form for its fields (without including
FILLERS) use:

FIELDS|MEMBERS OF|IN group-name

Example:

05 PART-NO.
10 BRANCH PIC X(3).
10 PART-ID PIC X(8).

The group name PART-NO is treated as a PIC X(11) field if it is moved to
another field or is used in an EXPORT command.

ALLOW: Changing Fields
Records are not allowed to be added, changed or deleted unless explicit
permission is stated in the TQL program. Fields within records cannot
change unless permission is explicitly given.

TIP Query Language

22 Draft 2.5 - Confidential IP-627

The ALLOW clause enables the programmer to specify what actions are
permitted. The ALLOW clause may appear within a pre-compiled record
layout, or within the DATA DIVISION of the TQL program. The program
may specify multiple ALLOW clauses for a record.

Syntax:

ALLOW ADD.
ALLOW DELETE.
ALLOW CHANGE field-names.
ALLOW CHANGE ALL.
NO CHANGE field-names.
NO CHANGE ALL.

Where:

ALLOW ADD
Indicates that records may be added to this file.

ALLOW DELETE
Indicates that records may be deleted from the file.

ALLOW CHANGE
Defines which fields of the record may be changed when
records are being updated.

field-names
A list of field names involved. The names may be
separated by commas or spaces and the statement should
be terminated with a period.
The reserved word ALL may be used as a field name to
avoid having to explicitly mention all field names.
If the field name is a table the change attribute applies to
every occurrence in the table. This field name may be
subscripted to restrict application of the attribute.

NO CHANGE
Identifies fields, which may not change.

Example:

ALLOW CHANGE ALL.
NO CHANGE S-I-N.
ALLOW CHANGE SALARY DEDUCTIONS.

Additional Considerations:

Multiple clauses may be specified. In fact, some of these clauses may be
specified within a pre-compiled record layout and then additional clauses
may be specified in the program after the pre-compiled record layout is
selected.

The rule used to resolve multiple specifications (for a specific field) is that
the last stated attribute applies. In the example above, the field S-I-N

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 23

cannot change but all others can change (the net effect of stating:
ALLOW CHANGE ALL. NO CHANGE S-I-N).

ALLOW: Exporting Fields

Field names may be used by the run-time user to EXPORT data to an
external destination. The programmer may specify whether or not certain
fields may be EXPORTed by the user.

The default is that all fields are exportable.

The ALLOW clause may appear within a pre-compiled record layout, or
within the DATA DIVISION of the TQL program. The program may specify
multiple ALLOW clauses for a record.

Syntax:

ALLOW EXPORT field-names.
ALLOW EXPORT ALL.

NO EXPORT field-names.
NO EXPORT ALL.

Where:

ALLOW EXPORT
Defines which fields of the record may be exported.

field-names
A list of field names involved. The names may be
separated by commas or spaces and the statement should
be terminated with a period.
The reserved word ALL may be used as a field name to
avoid having to explicitly mention all field names.
If the field name is a table the export attribute applies to
every occurrence in the table. This field name may be
subscripted to restrict application of the attribute.

NO EXPORT Identifies fields, which may not be exported.

Example:

NO EXPORT ALL.
ALLOW EXPORT CUST-NO CURRENT-BALANCE.

This example illustrates preventing the EXPORT of all fields except the
CUST-NO and CURRENT-BALANCE fields.

Additional Considerations:

Multiple clauses may be specified. In fact, some of these clauses may be
specified within a pre-compiled record layout and then additional clauses

TIP Query Language

24 Draft 2.5 - Confidential IP-627

may be specified in the program after the pre-compiled record layout is
selected.

The rule used to resolve multiple specifications (for a specific field) is that
the last stated attribute applies.

ALLOW NULL: Fields
The NULL attribute may be applied to a field in a record that is stored in a
TIP/dbi-supported database. TIP/dbi represents a NULL field by using
LOW-VALUES for the contents of the data field.

Displaying and updating such fields using TQL requires special handling.
The LOW-VALUES in the data field could cause incorrect data to be
displayed on a screen format because the LOW-VALUES have special
meaning in the context of a TIPMSGO call.

To ensure that data for a record is displayed and updated correctly TQL
will convert any display field that contains all LOW-VALUES to all
SPACES or ZEROES. If the record was being updated using a display,
SPACES or ZEROES could be stored back in the record instead of the
LOW-VALUES that the field originally contained.

To address this situation, fields can be given the NULL attribute, which
will cause the following behavior:

If, when updating a record using a TQL display, a field originally
contained LOW-VALUES and after input is received it contains all
SPACES for non-numeric or ZEROES for numeric then TQL will
automatically store LOW-VALUES in the field. If the NULL attribute is not
specified, SPACES or ZEROES will be stored in the field.

The original value of the field must have been LOW-VALUES for TQL to
exhibit this behavior. When adding a new record using a TQL display the
record will be initialized to SPACES for non-numeric and ZEROES for
numeric. If you want fields to be stored as NULL when adding a new
record then LOW-VALUES should be moved to the desired fields in an
ON ADD/WRITE declarative. TQL will not automatically handle this
scenario.

Syntax:

ALLOW NULL field-names.

Where:

ALLOW NULL
Identifies fields of the record, which must be given an
explicit value when a record is added or changed.

field-names
A single field name or a list of field names.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 25

The names may be separated by commas or spaces and
the statement must be terminated with a period.
If the field name is a table the NULL attribute applies to
every occurrence in the table.

Example:

ALLOW NULL SALARY, DEDUCTIONS.

Additional Considerations:

Multiple ALLOW NULL clauses may be specified if necessary.

ALLOW: GO (Auto Update)
TQL has a run-time verb (GO) which may be specified in conjunction with
the UPDATE command. This option instructs TQL to update all records
selected without displaying each record on the terminal.

This facility is permitted at run time only if an ALLOW GO clause appears
in the TQL program.

This clause can not appear in a pre-compiled RECORD definition. It must
be coded in the program! This is a safety feature; precompiled record
layouts (in our view) should not freely provide such potentially dangerous
permission.

Syntax:

ALLOW GO.

Example:

An example illustrating the use of the GO verb is included in the
description of the UPDATE run-time command.

Hidden Fields
The run-time user has access to a SHOW command which is used to
reveal record and field names the user often cannot remember all of the
field names in a particular record or display.

The programmer may identify which fields are to be considered to be
hidden fields. Hidden field names will not be revealed by the SHOW
command, but are otherwise valid field names (the user may use the field
name if it is known or guessed, but the SHOW command will not reveal
the existence of such fields).

The default is that all fields are not hidden.

TIP Query Language

26 Draft 2.5 - Confidential IP-627

This clause may appear within a pre-compiled record layout, or within the
DATA DIVISION of the TQL program. The program may specify multiple
such clauses for a record.

Syntax:

HIDDEN field-names.
HIDDEN ALL.
NO HIDDEN field-names.
NO HIDDEN ALL.

Where:

HIDDEN
Defines which fields of the record are to be hidden from the
run-time user.

field-names
A list of field names involved. The names may be
separated by commas or spaces and the statement should
be terminated with a period.
The reserved word ALL may be used as a field name to
avoid having to explicitly enter all field names.

NO HIDDEN
Identifies fields, which are not hidden.

Example:

HIDDEN ALL.
NO HIDDEN CUST-NO CURRENT-BALANCE.

In this example the SHOW command may only reveal the existence of the
fields named CUST-NO and CURRENT-BALANCE.

Additional Considerations:

Multiple clauses may be specified. In fact, some of these clauses may be
specified within a pre-compiled record layout and then additional clauses
may be specified in the program after the pre-compiled record layout is
selected.

The rule used to resolve multiple specifications (for a specific field) is that
the last stated attribute applies.

MUST ADD: Fields
If there are fields, which must be entered when the run-time user is
entering data at the terminal, the programmer must designate such fields
as "MUST ADD" fields.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 27

Numeric fields designated as MUST ADD are not accepted from the
terminal if the value is omitted or zero. Alphanumeric fields are not
accepted if the field is omitted or contains all spaces.

The programmer may specify the following statements after the record
definition. The default for a field is that TQL will accept fields as entered
(subject to any VERIFY clauses that may be present for the field).

Syntax:

MUST ADD field-names.
MUST ADD ALL.

Where:

MUST ADD
Identifies fields of the record, which must be given an
explicit value when a record is added or changed.

field-names
A single field name or a list of field names.

The names may be separated by commas or spaces and
the statement should be terminated with a period.
If the field name is a table the change attribute applies to
every occurrence in the table. This field name may be
subscripted to restrict application of the attribute.

ALL The reserved word "ALL" may be used to imply all that all
fields in the record are affected.

Example:

MUST ADD ALL.
MUST ADD SALARY, DEDUCTIONS.

Additional Considerations:

Multiple MUST ADD clauses may be specified if necessary.

Preventing Use of Run-time Commands

When a TQL program is executed by a user, the user normally has
access to a number of run-time commands. The TQL programmer can
prevent the use of some run-time commands by including one or more of
the following statements at the end of the DATA DIVISION coding.

Syntax:

NO PRINT
NO SELECT
NO SORT

TIP Query Language

28 Draft 2.5 - Confidential IP-627

In each case, the presence of the statement prohibits the run-time user
from using the corresponding statement while executing the TQL
program.

Record Selection - ID IS
Files may contain many different record types. When more than one
RECORD type exists in a particular file, TQL must have a means of
determining which record layout applies to a given physical record.

The ID clause is used to provide the criteria for TQL to determine whether
a specific record is of a particular layout or type.

Syntax:

ID IS expression

Where:

expression
A relational expression which is a test for the presence of
this record.

TQL evaluates the expression on every read or write of a
record to determine whether the physical record is to be
described by this record layout.

Example:

ID IS REC-TYPE = 'H'.
ID IS REC-TYPE NE 'H' AND SAL > 25000.

In the first example, the programmer has specified that the field REC-
TYPE must be equal to the literal "H".

The second example requires that the field REC-TYPE is NOT equal to
the literal "H" and the field SAL must be greater than 25,000.

If a record is read that does not satisfy the condition, TQL ignores that
record and proceeds to the next record.

It is not possible to use Working Storage fields or System fields in
expressions in an ID IS clause.

Key Prefix
A popular technique to segregate records in a file is to specify a
sequence of characters as a prefix within the key of a record. For
example, a payroll file may contain records for many client companies.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 29

The key is constructed by concatenating a particular company code (say
one character) to an employee number:

05 PAY-KEY.
10 COMP-CODE PIC X.
10 EMP-LAST-NAME PIC X(20).

When this type of organization is used, the intention is often to hide from
the run-time user the existence of the prefix that appears at the front of all
key values. TQL can be made aware of the existence of a common prefix
and made to automatically prefix all supplied keys with the stated
alphanumeric value.

Syntax:

KEY PREFIX [FOR { data-name | KEYn } ...]
Literal

Where:

data-name
Restricts KEY PREFIX to the specified key. The key may
be specified using the data name corresponding to the
key.
If the FOR clause is omitted the key prefix applies to all
keys.

KEYn
Restricts KEY PREFIX to the specified key. The key may
be specified using the KEYn keyword where n is a number
in the range of 1 to 10 (i.e. KEY5).
If the FOR clause is omitted the key prefix applies to all
keys.

literal
A character literal representing the common character
prefix that is to be automatically used as a prefix to key
values entered by the run-time user.

Example:

If (referring to the key layout described at the beginning of this section)
the COMP-CODE field always contained "J" for the users of this particular
TQL program, the clause:

KEY PREFIX 'J' *> Use literal "J"

could be included following the record definition.

At run time, the terminal user would have the impression that the key of
the file was simply the EMP-LAST-NAME information and could enter
commands that omit the "J" that is always present:

REC FROM 'SMITH'
*> using key prefix example from above

TIP Query Language

30 Draft 2.5 - Confidential IP-627

*> implies “JSMITH” is the real key

Additional Considerations:

The KEY PREFIX applies to all keys of a MIRAM file, not just the primary
key if the FOR clause is not specified. This clause cannot be specified in
a pre-compiled record layout. It must appear in the program (of course, it
can simply be placed after the reference to a pre-compiled record).

VERIFY: Fields

The programmer may specify that TQL is to verify the contents of one or
more fields whenever a record is added or updated.

TQL validates the contents of the fields as the data fields are moved from
the display area to the record (build) area. Field verification is only applied
to fields displayed to a user. Verify clauses for fields that are not
displayed to the user are ignored.

Fields may be verified by specifying a list of possible values for each field
to be verified. Such statements must follow the appropriate record
definition.

If the field name is an unsubscripted table item, the VERIFY literals apply
to every occurrence of the table. You may specify separate verifies for
individual table items by specifying subscripts as required for the field
name.

VERIFY clauses are accumulative. Previous VERIFYs continue to apply
and the new literals are added as required.

Syntax:

VERIFY field 'string' THRU 'string'.
VERIFY field 'string', 'string' ... 'string'
VERIFY field 'string'.
VERIFY field number THRU number.
VERIFY field number, number ... number.
VERIFY field number.

Where:

field
The name of the data field to be verified.

'string'
A specific alphanumeric value.

number
A specific numeric value.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 31

THRU or THROUGH
Used to define an inclusive range of values.

Example:
VERIFY SALARY 10000, 20000, 30000 THRU 55000.
VERIFY TITLE 'V.P.', 'MANAGER', 'GO-FOR'.
VERIFY TABLE-1 100 *> verify applies to every occurrence
VERIFY TABLE-2 (1..5) 100 *> verify applies to first 5 occurrences
VERIFY TABLE-2 (1..2) 200 *> in addition, TABLE-2(1..2) may also
*>have the value 200 as well as 100.

Additional Considerations:

A field may be tested for specific values and/or range(s) of values. If the
value of a field (that is entered at run time by the terminal operator) is
found to not pass all specified VERIFY clauses, TQL sends an error
message to the terminal operator. The terminal operator must correct the
field in error and press the TRANSMIT key to try again.

VERIFY clauses do not apply to TQL statements used to modify fields. So
a programmer can MOVE any value to a field regardless of whether there
are VERIFY statements for the field.

If a VERIFY clause exists for a field then a MUST ADD statement for the
field is not necessary and can lead to confusion. To allow an
alphanumeric field to be left blank include ' ' as a valid value for the field.
To allow a numeric field to be left blank include 0 as a valid value for the
field. However, if MUST ADD was specified for the field then a value must
be entered for the field even if the VERIFY clause specified that blank or
zero was a valid value. This same behavior can be achieved by omitting
the MUST ADD for the field and simply removing blank or zero from the
list of valid field values.

The following are two ways of imposing identical restrictions on FIELD-A.

MUST ADD FIELD-A
VERIFY FIELD-A ' ' 'A' 'B' 'C'
VERIFY FIELD-A 'A' 'B' 'C'

This VERIFY clause would not prevent the programmer from moving
some other value to FIELD-A. For example:

ON WRITE OF RECNAME
MOVE 'Z' TO FIELD-A.

System Fields
There are several system data fields that are maintained by TQL that are
available to the TQL program. They may be used in the same manner as
record fields with the exception that ONLY the ERRCODE$ field may be
assigned a value.

TIP Query Language

32 Draft 2.5 - Confidential IP-627

$ Dollar sign

System fields are distinguished from "ordinary" fields by the presence of a
dollar sign ("$") as the last character of the field name.

Field Picture Definition

AUTHOR$ X(8) user id of programmer who wrote
the TQL program.

CC$ X(2) Current century.

CCYY$ X(4) Current year in long format.

CJUL$ 9(7) Current date in CCYYDDD (Julian
or day-of-year) format.

CYMD$ 9(8) Current date in CCYYMMDD
format.

DAY$ X(20) Current day of the week as a text
field (i.e. Friday)

DD$ X(2) Current day.

DESC$ X(30) Description of program from
PROGRAM-ID clause.

DMCY$ 9(8) Current date in DDMMCCYY
format.

DMY$ 9(6) Current date in DDMMYY format.

ERRCODE$ X(1) A status field (this field may be set
by the program).

GRPCNT$ 9(2) Number of actual groups as
returned by TIPGRPS call.

GRP$ X(8)
OCCURS
16 TIMES

Table of user’s group membership
as returned by TIPGRPS call.

HH$ X(2) Current hour.

HHMM$ 9(4) Current time of day in HHMM
format.

JUL$ 9(5) Current date in YYDDD (Julian or
day-of-year) format.

KEY$ X(1) Internal representation of the key
pressed. Use the following
condition names instead of directly
examining this field.

TQL-CANCEL-KEY

TQL-CONFIRM-KEY

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 33

TQL-DELETE-KEY

TQL-MORE-KEY

TQL-NEXT-KEY

TQL-PREVIOUS-KEY

TQL-REFRESH-KEY

TQL-TIMEOUT-KEY

TQL-TRANSMIT-KEY

TQL-UPDATE-KEY

LEVEL$ 9(4) Binary numeric field specifying the
current control level break. It may
be used to index into accumulator
arrays for control break
processing.

LINE$ 9(3) Current line number (in a report).

LPP$ 9(4) Binary numeric field containing the
number of printable lines on a
page. It may be used in report
writing.

MIN$ X(2) Current minute.

MONTH$ X(20) Current Month as a text name (i.e.
January)

MON$ X(2) Current month.

PAGE$ 9(5) Current page number (of report).

PROGRAM$ X(8) TQL program-id name

SITE$ X(12) TIP site name.

TID$ X(4) Terminal name where the TQL
program is executing.

TIME$ 9(6) Time of day in HHMMSS format.

UID$ X(8) user id of user running TQL
program.

YMD$ 9(6) Current date in YYMMDD format.

YY$ X(2) Current year.

TQL Program Structure
The general structure of a TQL program follows this layout:

IDENTIFICATION DIVISION.

TIP Query Language

34 Draft 2.5 - Confidential IP-627

PROGRAM-ID. name.
DATA DIVISION.
FILE file-name-1.
RECORD record-name-1. *>THIS IS THE RECORD NAME
[ALLOW CHANGE, NO CHANGE, VERIFY, ID, clauses]
[ALLOW DELETE.] [NO DELETE.]
[ALLOW ADD.] [NO ADD.]
RECORD record-name-n. ...etc...
FILE file-name-n.
RECORD record-name-n. ...etc....
[WORKING-STORAGE SECTION.]
[DECLARATIVES SECTION.]
*
* comments may be entered anywhere
* by entering an asterisk (*) in column 7
* comments continue to the end of the line
*
[DISPLAY DIVISION.]
[REPORT DIVISION.]

A program may specify as many files and records as are needed for the
application. TQL programs may have any number of defined displays
and/or reports. There must be at least one display or report in a TQL
program.

IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION of a TQL program must appear first and
is required in all TQL programs. This division:

names the TQL program,

may provide an informative description of the program and

may restrict run-time access of the program to specific TIP users.

Syntax:

IDENTIFICATION DIVISION.
PROGRAM-ID. progname
["Comments..."]
[PRIORITY = n]
["description of program"]
[GROUP = id]
[GROUPS = (, , ,)]
[MAXREAD n]
[PASSWORD PROTECT]
[RESET READ FROM]
[CURRENCY [SIGN] [IS] <literal>]

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 35

[DECIMAL-POINT [IS] COMMA]

Where:

progname
Up to eight characters (the first of which must be
alphabetic) which uniquely identifies the program. This
name is used by the run-time TQL user to run this TQL
program.

PRIORITY=
A keyword on the PROGRAM-ID statement that sets the
execution priority (number) for that TQL program in the on-
line system. This keyword is accepted but has no effect.

description
Up to thirty characters (enclosed in single quotes) which
provide a description of the program.

This is the character string returned as the system field
"DESC$" (see also "SYSTEM FIELDS").

GROUP =
A group name that specifies which users may execute this
TQL program. A user may use this program only if their
TIP user id or a group to which they belong or their
terminal name matches this id.

GROUPS =
A list of up to 8 group names that are used to determine
which users may execute this TQL program.

A user may use this program only if their TIP user id or a
group to which they belong or their terminal name matches
an id in this list.

This clause may be specified in addition to or instead of
the GROUP= clause.

If neither GROUP= nor GROUPS= is specified, the TQL
program is not restricted to any specific users.

PASSWORD PROTECT
If this clause is specified, the programmer is asked when
the TQL program is compiled) to assign a password for this
program.

Whatever password is assigned by the programmer must
be supplied by all users who attempt to run this TQL
program.

TIP Query Language

36 Draft 2.5 - Confidential IP-627

To change the password of a TQL program, the
programmer must recompile the program and specify a
new password.

MAXREAD n or MAXREAD = n
This clause specifies the number of read operations that
this program may perform before TQL calls TIPTIMER to
temporarily release resources. This also defines how often
TQL will check for user interruption via the CANCEL key.

RESET READ FROM
This clause allows for READ FROM to reset its sequential
position if the identifier that holds the FROM specification
changes value although no new driving read has occurred.
The default is to not reset sequential position until a new
driving record is present.

CURRENCY SIGN IS literal
The specified literal will be used as the currency symbol.
The literal must be in quotes and can only be one
character long. This clause will override the TQL system
default.
Default: "$"

DECIMAL-POINT IS COMMA
This clause indicates that the decimal point is the ","
character and the thousands separator is the "." character.

Default: Off.

Example:

IDENTIFICATION DIVISION.
PROGRAM-ID. MYTQL 'Comments...' PRIORITY=2.

DATA DIVISION

The DATA DIVISION of a TQL program is a required division and must
immediately follow the IDENTIFICATION DIVISION.

The first section of the data division identifies the files and records that
are used by the program. Subsequent (optional) sections define program
work fields (WORKING-STORAGE SECTION) and exceptional event
processing (DECLARATIVES SECTION).

Syntax:

DATA DIVISION.
FILE file-name.
[RECORD rec-name.]
[ALLOW, VERIFY, ID, clause(s) etc.]
[01 name.]

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 37

[05 ...]
[...]
[ALLOW, VERIFY, ID, clause(s) etc.]

Where:

file-name
The name of a pre-compiled file description.

There must be at least one file specified in a TQL program.

rec-name
The name of a pre-compiled record description.

name The record name of an explicitly defined record that is
coded inline

Additional Considerations:

Records may be defined either by referring to the name of a pre-compiled
record (that is, via the RECORD clause), or by actually coding the record
description instead of the RECORD clause.

More than one record may be specified for a file; more than one file may
be specified in a TQL program.

The ALLOW, VERIFY, and ID clauses may be specified in a pre-compiled
record description, after the RECORD clause, or after the in-line record
description.

Example of a Data Division Definition

DATA DIVISION.
FILE PAYMAST.
RECORD PAY-HDR.
RECORD PAY-DETL.
FILE PAYTRANS.
01 PAYTRAN.
05 FILLER PIC X(4).
05 PAYTRAN-ID PIC X(2).
05 PAYTRAN-DATA OCCURS 12 TIMES.
10 PAYTRAN-AMOUNT PIC S9(7)V9(2).
ALLOW CHANGE ALL
ALLOW DELETE ALLOW ADD
VERIFY PAYTRAN-ID = 'B3'
MUST ADD PAYTRAN-AMOUNT.

WORKING STORAGE SECTION

The WORKING-STORAGE SECTION of the DATA DIVISION of a TQL
program is an optional section that may be included by the programmer to

TIP Query Language

38 Draft 2.5 - Confidential IP-627

define work fields that are used in computations or other data
manipulations.

The section must contain only a single 01 level. All fields must be
subordinate to this group item.

Since VALUE clauses are ignored by TQL, these fields are initialized by
TQL to zero or spaces (as appropriate) every time the run-time user
issues a run-time command (other than NEXT, PREV or MORE).

The WORKING-STORAGE section may be followed by the attribute lists
just like any other record description.

Fields that are defined in the WORKING-STORAGE section may be
displayed or reported as if they were fields in a record.

Example:

WORKING-STORAGE SECTION.
01 WORK-FIELDS.

05 GRAND-TOTAL PIC S9(7)V99
COMP-3.

05 SUB-TOTAL PIC S9(7)V99
COMP-3.

05 FULL-ADDRESS.
10 FULL-ADDRESS-1 PIC X(40).
10 FULL-ADDRESS-2 PIC X(40).
10 FULL-ADDRESS-3 PIC X(20).

TQL Statements

In the following sections, reference is made to the syntax of various TQL
statements that may appear in a TQL program.

TQL does not depend on the presence of periods to delimit statements (in
this respect TQL is quite unlike standard COBOL-74). In fact, TQL does
not allow a period except to end:

a SECTION or

a DIVISION or

an "ON" clause in the DECLARATIVES SECTION.

TQL allows the programmer to group more than one statement into
statement blocks (for use in loops or IF statements etc.). To group
statements into statement blocks (or lists), the programmer can enclose
group statements by { ... } pairs:

Example:

IF (A <> B) {
MOVE 0 TO AMT-OWING

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 39

MOVE 0 TO AMT-OWING-30
MOVE 0 TO AMT-OWING-60
MOVE 0 TO AMT-OWING-90
MOVE 0 TO AMT-OWING-120
}

In the above example, the five MOVE statements are grouped so that
they are considered a single compound statement that is to be executed if
A is not equal to B.

Example:

DO 10 { READ PART-MASTER-REC
PUT PART-NUMBER
PART-DESCRIPTION
PART-STANDARD-COST
}

PERFORMED procedures
TQL allows the programmer to define procedures (groups of statements)
that may be PERFORMed from other areas of the same DIVISION. There
are a number of basic rules:

the TQL compiler is a single pass compiler; therefore, a routine cannot be
performed unless it has already been declared.

the only statements that are allowed in a routine are those statements
that are allowable in that DIVISION.

routine names are unlimited in length but only the first 30 characters are
significant.

The syntax is illustrated by the examples which follow.

Example:

DECLARATIVES SECTION.
ON PERFORM OF INIT-TABLE
IF STATUS-TBL (1) = ' '
{ MOVE 'Active' TO STATUS-TBL (1)
MOVE 'Deleted' TO STATUS-TBL (2)
MOVE 'Temporary' TO STATUS-TBL (3)
MOVE 'Closed' TO STATUS-TBL (4)
}.
ON READ OF CUSTOMER-REC
PERFORM INIT-TABLE
MOVE CUST-STAT TO CS-INDEX
MOVE STATUS-TBL (CS-INDEX) TO W-DESC.

In this example, a working storage table is initialized to contain the long
descriptions of various record status codes. The status code byte in the
record is then moved to a work field (that is defined appropriately as a

TIP Query Language

40 Draft 2.5 - Confidential IP-627

binary halfword). The halfword is then used as an index into the table of
descriptions.

Example:

DISPLAY DIVISION.
ON PERFORM OF HDR-INFO
CUST-NUM CUST-NAME CUST-PHONE.
AR: READ CUSTREC
PERFORM HDR-INFO
PUT CUST-BALANCE CUST-OVER-30 CUST-OVER-60
USING SCREEN1.
ADDR: READ CUSTREC
PERFORM HDR-INFO
PUT CUST-ADDR1 CUST-ADDR2 CUST-PROV CUST-
ZIP
USING SCREEN2.

This example defines a routine named HDR-INFO that simply displays
three fields. The routine is used in both the accounts receivable display
(AR) and in the address display (ADDR).

Example:

REPORT DIVISION.
ON PERFORM OF HEADINGS
HOME$
TAB$(30) 'Inglenet Business Solutions'
TAB$(60) 'Page: ' PAGE$ NL$
80 NL$ NL$.
ON PERFORM OF FOOTINGS
NL$ 80 NL$.
RPT1: PERFORM HEADINGS
...
PERFORM FOOTINGS
ON AUX1.
RPT2: PERFORM HEADINGS
...
PERFORM FOOTINGS
ON PRNTR.

In this example a heading procedure and a footing procedure are defined.
These procedures can be PERFORMed by any of the various reports that
are defined in the REPORT DIVISION. This technique is also useful in
situations where headings may need to be output in more than one place
in a report.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 41

DECLARATIVES SECTION

The DECLARATIVES SECTION of the DATA DIVISION of a TQL
program is an optional section that may be included by the programmer to
define special processing that is to occur after a specified record is read
or immediately before a specified record is written or added. For example,
the programmer may wish to time stamp all records which are written to a
file. Rather than have the user enter the current date and time for each
record (a tedious and error-prone procedure), the program could
accomplish this by coding the appropriate move statements in the
Declaratives section.

Syntax:

DECLARATIVES SECTION.
[ON ADD OF record-name statements.]
[ON DELETE OF record-name statements.]
[ON READ OF record-name statements.]
[ON WRITE OF record-name statements.]
[ON PERFORM OF procedure statements.]

Where:

ON READ OF
Clause indicating that the statements which follow are to
be executed immediately AFTER any read of the specified
record name.
An ON READ declarative for one record may contain
READ statements to get other records. This is the only way
to select records (by using an IF clause at run time) based
on the value of data in supplementary records.

ON WRITE OF
Clause indicating that the statements which follow are to
be executed immediately BEFORE any write of the
specified record name.

ON ADD OF
Clause indicating that the statements which follow are to
be executed immediately before any new record is added
to the file.
If both ON WRITE and ON ADD declaratives exist for the
same record, TQL will only execute the ON ADD
declarative for added records. The ON WRITE declarative
will then only be used when a record is updated (rewritten).

ON DELETE OF
Clause indicating that the statements which follow are to
be executed immediately before any record is about to be
deleted from the file.

ON PERFORM OF
Clause indicating defined procedures (groups of

TIP Query Language

42 Draft 2.5 - Confidential IP-627

statements) that may be PERFORMed from other areas of
the same DIVISION. See PERFORMED procedures for a
number of basic rules to be followed.

record-name
Specifies the record name associated with this clause.

statements
One or more statements which are to be executed.

Valid statements for use in the DECLARATIVES SECTION are described
as follows:

expr
{ statement-list }
[DO] number { statement-list }
ADD expr TO field ...
ADD expr ... TO identifier [ROUNDED] ...
ADD expr ... TO expr GIVING identifier
[ROUNDED]...
BREAK
COMMIT
COMPUTE field = expr
DELETE record
DISPLAY 'string'
DIVIDE expr INTO identifier [ROUNDED] ...
DIVIDE expr INTO expr GIVING identifier
[ROUNDED] ...
DIVIDE expr BY expr GIVING identifier
[ROUNDED] ...
DIVIDE expr BY|INTO expr GIVING identifier
[ROUNDED]
REMAINDER identifier
ERROR 'string' [AT number]
EXIT
GET record FROM field
GET record FROM field BY key-field
GET record VIA field
GET record VIA field BY key-field
IF expr { statement-list }
IF expr { statement-list } ELSE {
statement-list }
INSERT record [AT number]
MOVE expr TO field
MOVE expr TO identifier
MULTIPLY expr BY identifier [ROUNDED] ...

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 43

MULTIPLY expr BY expr GIVING identifier
[ROUNDED] ...
NEXT-LOOP
NEXT RECORD
ON ERROR 'string'
PUT expr ...
READ record
READ record FOR UPDATE
READ record FROM field
READ record FROM field BY key-field
READ record VIA field
READ record VIA field BY key-field
SET condition-name TO TRUE|FALSE
SUBTRACT expr FROM field ...
SUBTRACT expr ... FROM identifier [ROUNDED]
...
SUBTRACT expr ... FROM expr GIVING
identifier [ROUNDED] ...
SUM expr INTO accumulator-array
UPDATE record
WHILE expr { statement-list }

Where:

expr
A standard TQL expression.

DO number {statement-list}
Indicates that the instructions appearing inside the
parentheses are to be repeated the specified number of
times. This is the simplest way to display more than one
record. The loop will be exited early if any imbedded READ
statement fails to retrieve a record from the file.

ADD The arithmetic expression is evaluated, added to the value
of the field and the result stored in the field.

BREAK
Exit a loop early.
Only valid in a loop construct.

COMMIT
All pending record updates are done immediately and TIP
will commit all record updates and unlock the record keys.
If the system stopped after this point all updates are
completed and would not be rolled back.

COMPUTE
The arithmetic expression is evaluated, and the result
stored in the field.

TIP Query Language

44 Draft 2.5 - Confidential IP-627

DELETE record
The named record is immediately deleted from its file.

DISPLAY 'string'
Used to redisplay the whole screen, possibly with new
data.

DIVIDE expr
Used for division providing specified remainders.

ERROR 'string' [AT number]
The specified string is used as an error message and the
system field ERRCODE$ is set to a non-blank value to
indicate an error has occurred. This statement will exit the
declarative immediately.
This clause may be used to signal an error condition, for
example:

IF (COUNT LT 10) (ERROR 'NOT ENOUGH STOCK')

The optional AT number clause can be used to highlight
the field number in error. The FCC attribute “.B” is used.

EXIT
The EXIT verb may be used in this section to cause an
immediate EXIT from a particular ON condition. For
example:

ON READ OF CUSTREC
...
IF (AREA-CODE = 416) {EXIT}
...

In this example, the statements that precede the area code
test are executed for all customer records that are read.
The statements following the area code test, however, are
only executed if the area code is not 416. If the area code
is 416, the EXIT verb immediately (and prematurely)
terminates the declarative (it does not skip or otherwise
affect the record that is being processed the NEXT
RECORD statement is used to skip the current record).

The main difference between EXIT and NEXT RECORD is
whether or not the statements following are executed. In
the case of NEXT RECORD, the statements that follow are
executed by TQL. In the case of the EXIT verb, the
statements that follow are not executed.

GET record
Directs TQL to read the specified record for information
purposes only. (A READ may actually result in a read for
update if an UPDATE, ADD, or DELETE command is
being processed, whereas "GET" is always a read for
information only).

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 45

IF The relational expression immediately following the IF is
evaluated. If it is found to be true then the code inside the
parentheses will be executed. If it is found to be false then
the code in parentheses following the ELSE will be
executed. If no ELSE clause was given TQL continues with
the next statement after the IF clause.

INSERT record [AT number]
Directs TQL to add the specified record to the file
immediately. The user program is responsible for ensuring
that all fields of the record contain valid data.
If the AT clause is specified the record is added at the
specified record number position. This clause is only
applicable for direct access (DAM) files. If a record already
exists at that location it will be overwritten.

MOVE
The expression is evaluated, and the result is stored in the
field. TQL now accepts:

MOVE ZERO TO xxx

MULTIPLY
Used for expression multiplication.

NEXT-LOOP
Go to the test condition of the loop.
Note: Only valid in loop construct.

NEXT RECORD
This moves an "S" to the field ERRCODE$, indicating the
current record is to be bypassed.

ON ERROR
This clause may be used following a read statement to
specify a string which will be displayed if an error occurred
during the read. If ERRCODE$ is not a space then the
declarative will be exited with the specified literal being
used for the error message.

PUT expr
Used to signify that the expression is to be sent for output.
The following code is identical:

READ MY-REC
DSPLY-1 DSPLY-2 DSPLY-3

and

READ MY-REC
PUT DSPLY-1 DSPLY-2 DSPLY-3

The PUT statement provides consistency in the statements
- all statements now start with a verb.

TIP Query Language

46 Draft 2.5 - Confidential IP-627

PUT also allows for easy handling of field-names after
verbs that take multiple receiving items (MOVE, ADD...)
For example, instead of:

MOVE "A" TO ITEM-1
{ item-list }

you would use

MOVE "A" TO ITEM-1
PUT item-list

Note: The use of PUT is optional. We recommend that
you use PUT since future releases of TQL will
enhance the use of the PUT verb. Since the use of
PUT removes some ambiguities in the language, its
use may become mandatory. Inglenet supplies a
conversion program (cvttql) for your TQL programs.

READ record
Directs TQL to read the specified record.

READ record FOR UPDATE
This command reads the record and imposes a record lock
(FCS-GETUP) even if the end user is only processing an
inquiry type of command. This allows TQL programmers to
update records and is usually followed by an UPDATE or
DELETE command.

READ record VIA field
"field" is the name of a field which contains the key of the
record to be read. If the READ is being done because a
record is about to be ADDed or UPDATEd then the READ
is actually a read for update ('FCS-GETUP') and the record
will be updated back to the file.

READ record FROM field
"field" is the name of a field holding (part of) the key for the
secondary record. The file is read sequentially until this
first portion of the key no longer matches the value in
"field".

READ record BY field
"field" is the name of a field that defines a secondary key
for the file being read. This clause may be used to indicate
that the file is to be read via a secondary key. The
reserved names "KEY1", "KEY2" ... "KEY10" may be used
to imply the key location (when it is undesirable or not
practical to use a defined field name).

SET condition-name TO TRUE | FALSE
This verb provides for level 88 support. A condition name
can also be set to FALSE if a when false literal is specified.

For example:

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 47

05 FOO PICTURE X(4).
05 FOO-TOO PICTURE X(4).

88 FOO-88-1 VALUE "ABCD" "DEFG".
88 FOO-88-2 VALUE "TEST".
88 FOO-88-3 VALUE "ABCD"

WHEN FALSE "DCBA".

MOVE FOO-88-2 TO FOO
MOVE FOO-88-1 TO FOO
MOVE FOO-88-3 TO FOO
SET FOO-88-2 TO TRUE
SET FOO-88-1 TO TRUE
SET FOO-88-3 TO FALSE
SET FOO-88-2 TO FALSE

Moves "TEST" into FOO.
 Not valid, multiple values in condition name.
 Not valid, multiple values.
Moves "TEST" into FOO-TOO.
 Invalid multiple values.
Moves "DCBA" into FOO-TOO.
 Invalid no FALSE literal.

SUBTRACT
The arithmetic expression is evaluated, subtracted from
the value of the "field" and the result is stored in the field.

UPDATE record
The named record is immediately written back to the data
file.

WHILE
The relational expression immediately following the WHILE
is evaluated. If it evaluates to be true, the code inside the
parentheses will be executed. The code is executed
repeatedly until the expression evaluates to be false.

Example:

DECLARATIVES SECTION.
ON READ OF PAYMAST ADD PAYMAST-SALARY TO
WS-TOTAL-SALARY
 ADD 1 TO WS-PAYMAST-COUNT.
ON WRITE OF PAYMAST MOVE TIME$ TO PAYMAST-
TIME-WRITTEN
 MOVE YMD$ TO PAYMAST-DATE-WRITTEN.

In this example, every time a record named 'PAYMAST' is read, TQL
automatically executes the two ADD statements (which presumably
modify some WORKING-STORAGE fields for later use).

TIP Query Language

48 Draft 2.5 - Confidential IP-627

Immediately before all writes of records named 'PAYMAST', TQL
automatically executes the two MOVE statements (which take advantage
of the system fields to move the current date and time to corresponding
fields in the PAYMAST record).

DISPLAY DIVISION

The DISPLAY DIVISION of a TQL program is a division that defines the
display sets that are available at execution time.

Each display set contains statements that specify the fields that are to be
displayed. In addition, the display set contains VERBS that specify (to
TQL) exactly which records to read or other operations to be performed.

At execution time, the user of the TQL program uses the name of a
display set to request the display of data according to the specifications of
the display set.

Syntax:

name : display-list USING mcsname ['fillchar']
[BEFORE [DISPLAY] PROCEDURE [IS] beforeproc]
[AFTER [DISPLAY] PROCEDURE [IS] afterproc]
[FCC DATA [AREA] [IS] fccdata]
[CURSOR DATA [AREA] [IS] cursordata]
[ON ENTER on-enter-name [on-enter-control]]
.

Where:

name The display name. This name is required and must be
unique within a TQL program. This name is used at
execution time by the TQL user to request a particular
display format.

on-enter-name
is one of the following:

display-name
data-name VIA on-enter-proc

on-enter-control
is one of the following:

[RETURN [CONTROL]] BEFORE [ADD]
AFTER [ADD]

display-list
is one or more of the following:
expr
{ display-list }
[DO] number { display-list }
ADD expr TO field
ADD expr ... TO identifier [ROUNDED]
ADD expr ... TO expr GIVING identifier [ROUNDED]

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 49

BREAK
COMPUTE field = expr
DIVIDE expr INTO identifier [ROUNDED] ...
DIVIDE expr INTO expr GIVING identifier [ROUNDED] ...
DIVIDE expr BY expr GIVING identifier [ROUNDED] ...
DIVIDE expr BY|INTO expr GIVING identifier [ROUNDED]
REMAINDER identifier
IF expr { display-list }
IF expr { display-list } ELSE { display-list }
MORE$
MOVE expr TO field
MOVE expr TO identifier
MULTIPLY expr BY identifier [ROUNDED] ...
MULTIPLY expr BY expr GIVING identifier [ROUNDED] ...
NEXT-LOOP
NL$
PUT expr ...
READ record
READ record BY key-field
READ record FROM field
READ record FROM field BY key-field
READ record VIA field
READ record VIA field BY key-field
SET condition-name TO TRUE|FALSE
SUBTRACT expr FROM field
SUBTRACT expr ... FROM identifier [ROUNDED]
SUBTRACT expr ... FROM expr GIVING identifier [ROUNDED]
WHILE expr

USING mcsname
This is the name of the (initial) TIP screen format that is to
be used to control the display format of the data. The
screen format name may be coded with or without quotes.

fillchar
You can specify a "*" or an "_" as the optional fill character
for entry fields in the specified screen format (mcsname).

BEFORE DISPLAY PROCEDURE IS beforeproc
The procedure beforeproc is executed before the display
code is executed. If ERRCODE$ is not space when
beforeproc returns, the display will not be run.
Typical uses for the BEFORE PROCEDURE are to set
field attributes for a screen or to limit the number of times a
record can be added in enter mode.

AFTER DISPLAY PROCEDURE IS afterproc
The procedure afterproc is executed when the user
presses TRANSMIT, MSG-WAIT, any function key or after
a time out has occurred for the associated screen. The
procedure gets control before TQL does any processing
including automatic VERIFY and NO CHANGE processing.
IF ERRCODE$ is not space when the procedure returns
TQL will not continue its processing and return to the
screen display in the same mode (that is update, enter
etc.)

Typical uses for the AFTER PROCEDURE are to do
further validation of user input or to prevent certain actions
such as an attempt to update by a given set of users.

TIP Query Language

50 Draft 2.5 - Confidential IP-627

The system field KEY$ and its associated condition names
may be used to query which key was pressed. We
recommend using the condition names instead of looking
at the value of KEY$. The content of KEY$ is an internal
representation of the pressed key and could be subject to
change in future releases. Do not rely on values observed
in KEY$.

FCC DATA AREA IS fccdata
The specified data area will be used as the FCC table for
the screen.
fccdata must be an alphanumeric data item defined in the
WORKING-STORAGE section. TQL does not do any
validation of the size of this data item. It is the
programmer's responsibility to ensure that it is large
enough to account for all the fields on the screen.

CURSOR DATA IS cursordata
The specified data area will be used as the cursor
modification table for the screen.
cursordata must be an alphanumeric data item defined in
the WORKING-STORAGE section. TQL does not do any
validation of the size of this data item. It is the
programmer's responsibility to ensure that it will be large
enough to account for all the fields on the screen.

ON ENTER displayname

ON ENTER dataname VIA displayproc
At the end of the DISPLAY definition, you can add the ON
ENTER clause. If you used the ENTER command to get to
this first display, once you have completed entering the
first screen full of data and press TRANSMIT, TQL will
switch to the displayname specified in the ON ENTER
clause. This syntax is useful for entering a header record
followed by several detail records. See the "ORD" Program
Description example in this manual. To end this function,
press CANCEL.

If the second form of the ON ENTER clause is used the
display that is run can be set at run-time. The procedure
displayproc will be executed before TQL starts the ENTER
screen. The display name to be run should be moved into
dataname. When the procedure exits, TQL will run the
display in this field. If the field is spaces then no enter
processing will occur.

ON ENTER processing can be chained together. A display
run as part of ON ENTER processing may itself perform
ON ENTER processing.

[RETURN CONTROL] BEFORE ADD
AFTER ADD

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 51

These two clauses determine when the parent record is
actually written. The record in the display that has the ON
ENTER clause is considered the parent record. Records
for displays run as part of the ON ENTER processing are
the child records.
The second clause is the default behavior. The ENTER
processing occurs after the record for the display invoking
the ON ENTER processing has been written.
The BEFORE ADD clause causes the ON ENTER
processing to occur for the children before the parent is
written. When the ON ENTER processing has completed
the parent record is automatically written. There is one
parent written for every invocation of the ON ENTER
processing.
The RETURN CONTROL is only applicable to the
BEFORE ADD clause. This clause prevents TQL from
automatically writing the parent record until the parent
screen is exited using MsgWait. This allows for running
multiple ON ENTER displays followed by one summary
parent record.

field The name of a data field. If the field is part of an OCCURS
clause, it may be followed by the occurrence number, for
example: PART-NUM(3). If no occurrence number is given,
the first occurrence is assumed. The field name must be
subscripted by a numeric expression. A subscript field may
be part of a record structure or a working-storage field

[DO] number {display-list}
Indicates that the instructions appearing inside the
parentheses are to be repeated the specified number of
times. This is the simplest way to display more than one
record. The "loop" will be exited early if any READ
statement fails to retrieve a record from the file.

expr A standard TQL expression (see TQL Expressions).

ADD The arithmetic expression is evaluated, added to the value
of the "field" and the result stored in the "field".
Note: The result fields as well as fields in the expression
may be subscripted when appropriate by either a constant
or subscript field.

BREAK
Exit a loop early.
Note: Only valid if in a loop construct.

COMPUTE
The arithmetic expression is evaluated, and the result
stored in the "field".

DIVIDE
Used for division providing specified remainders.

TIP Query Language

52 Draft 2.5 - Confidential IP-627

IF The relational expression immediately following the IF is
evaluated. If the expression is true the code inside the
parentheses will be executed. If the expression is false the
code in parentheses following the ELSE will be executed.
If no ELSE clause was given TQL continues with the next
statement after the IF clause. It may be necessary to
enclose the expression in parentheses to avoid confusion
with subscripting.

MORE$
Marks the point from which the display is to be continued
when more detail records are requested at execution time.
The TQL user can request "more" records by entering the
"MORE" run-time command (or by pressing F9).

MOVE
The expression is evaluated, and the result is stored in the
"field".

The MOVE verb allows data to be moved from an
alphanumeric field (PIC X) to a strictly numeric field (PIC
9). Digits from the alphanumeric field are moved (using
right justification) into the numeric field. No decimal point
alignment is performed since decimal point alignment is
undefined in an alphanumeric field.

MULTIPLY
Used to multiply.

NEXT-LOOP
Go to the top of a loop. Involves loop counter increment.
Note: Only valid in a loop construct.

NL$ This notation may be inserted to indicate (to the automatic
screen generation process see TQLMON "M" command)
that the screen format is to start a new line at this point.
This NL$ specification has no other effect.

PUT expr
Used to signify that the expression is to be sent for output.
The following code is identical:

READ MY-REC
DSPLY-1 DSPLY-2 DSPLY-3

and

READ MY-REC
PUT DSPLY-1 DSPLY-2 DSPLY-3

The PUT statement provides consistency in the statements
all statements now start with a verb.
PUT also allows for easy handling of field-names after
verbs that take multiple receiving items (MOVE, ADD...)
For example, instead of:

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 53

MOVE "A" TO ITEM-1
{ item-list }

you would use

MOVE "A" TO ITEM-1
PUT item-list

Note: The use of PUT is optional. We recommend that you
use PUT since future releases of TQL will enhance the use
of the PUT verb. Since the use of PUT removes some
ambiguities in the language its use may become
mandatory. Inglenet supplies a conversion program (cvttql)
for your TQL programs.

READ record BY field
field is the name of a data item that defines a key for the
file being read. This clause is be used to indicate that the
file is to be read via an alternate key. The reserved names
KEY1 ... KEY10 may be used to imply the key location
(when it is undesirable or not practical to use a defined
field name).

READ record VIA field
field is the name of a data item which contains the key of
the record to be read.

READ record FROM field
field is the name of a data item holding (part of) the key for
the secondary record. The file is read sequentially until this
first portion of the key in the record no longer matches the
value in field.

SET condition-name TO TRUE|FALSE
This verb provides for level 88 support. A condition name
can also be set to FALSE if a when...false literal is
specified.

For example:
05 FOO PICTURE X(4).
05 FOO-TOO PICTURE X(4).

88 FOO-88-1 VALUE "ABCD" "DEFG".
88 FOO-88-2 VALUE "TEST".
88 FOO-88-3 VALUE "ABCD"

WHEN FALSE "DCBA".

MOVE FOO-88-2 TO FOO
MOVE FOO-88-1 TO FOO
MOVE FOO-88-3 TO FOO
SET FOO-88-2 TO TRUE
SET FOO-88-1 TO TRUE
SET FOO-88-3 TO FALSE
SET FOO-88-2 TO FALSE

TIP Query Language

54 Draft 2.5 - Confidential IP-627

Moves "TEST" into FOO.
 Not valid, multiple values in condition name.
 Not valid, multiple values.
Moves "TEST" into FOO-TOO.
 Invalid multiple values.
Moves "DCBA" into FOO-TOO.
 Invalid no FALSE literal.

SUBTRACT
The arithmetic expression is evaluated, subtracted from
the value of the field and the result is stored in the field.

WHILE
The relational expression immediately following the WHILE
is evaluated. If the expression is true, the code inside the
parentheses will be executed. The code is executed
repeatedly until the expression evaluates to be false.

Example:

DEPLST: READ DEPT-REC, DEPT-NUM, DEPT-NAME,
MOVE 0 TO TOT-SAL,
MORE$
DO 19 {READ PAYREC FROM DEPT-NUM,
NAME, SIN, SALARY, NL$
ADD SALARY TO TOT-SAL,
}
TOT-SAL
USING PAYSCRN.

In the above example, TQL does the following for each display:

read a department record (DEPT-REC) and display the fields DEPT-NUM
and DEPT-NAME.

collect up to 19 payroll records (PAYREC) which are in the selected
department. The payroll file has the department number as the first part of
the key of the record.

for each PAYREC the fields NAME, SIN, and SALARY are displayed.

SALARY is accumulated in the field TOT-SAL.

TOT-SAL is the last field displayed on the screen

The Message Control System (MCS) screen format name is PAYSCRN.
Note that the inclusion of the NL$ notation forces the automatic screen
generator to begin a new line in the screen format at that point.

If more than 19 payroll records exist then the terminal operator may ask
for more by pressing the MORE key or entering the run-time command
MORE. TQL will continue from the point marked by the tag: MORE$.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 55

Example:

DEPSUM: DO 20 {
READ PAY-REC, READ DEPT-REC VIA DEPT-NUM,
NAME, SIN, SALARY, DEPT-NAME NL$
}
USING PAYDEPT.

In the preceding example, TQL does the following for each display:

read a payroll record (PAY-REC)

then read from the department file (DEPT-REC) by using the field DEPT-
NUM as a key. DEPT-NUM must be a field in the PAY-REC record.

for each PAY-REC the fields NAME, SIN, SALARY, and DEPT-NAME
(from department record) are displayed.

The Message Control System (MCS) screen format name is PAYDEPT.

Example:

DISPLAY DIVISION.
ON PERFORM OF AFTERPROC
IF TQL-UPDATE-KEY
AND UID$ = "DEFAULT"
ERROR "You are not allowed to update
records"
ELSE
MOVE SPACE TO ERRCODE$.
TESTDS: READ PAY-REC
PUT PAY-KEY
USING PAYDEPT
AFTER DISPLAY PROCEDURE IS AFTERPROC.

This example displays use of the AFTER PROCEDURE to prevent a user
named "DEFAULT" from updating records. All other users are allowed to
update records.

Note: The user DEFAULT would not be prevented from deleting a record if the
record allowed deletes.

REPORT DIVISION

The REPORT DIVISION of a TQL program is a division that is a TQL
extension to standard COBOL. This division defines one or more reports
that are available at run time to the TQL user. Each report has an
assigned name that is used by the user to select the report. The report
definition defines the contents of a logical page of the physical report.

TIP Query Language

56 Draft 2.5 - Confidential IP-627

A logical page may consist of more than one physical page. The runtime
TQL interpreter will generate the report by repeatedly generating the
logical page until no more records are available.

The default destination of the report may be either the site printer
(example: PRNTR) or an auxiliary printer. The printout is actually routed
by TQL via the TIP printing facility (TIPPRINT). The user may override the
destination of the report at the time the report is requested.

Syntax:

name : report-list ON printername [WITH|NO
HEADING]
[AT END report-list].

Where report-list is one or more of the following:

expr ...
{ report-list }
[DO] number { report-list }
ADD expr TO field ...
ADD expr ... TO identifier [ROUNDED] ...
ADD expr ... TO expr GIVING identifier [ROUNDED] ...
BREAK
COMMIT
COMPUTE field = expr
DELETE record
DIVIDE expr INTO identifier [ROUNDED] ...
DIVIDE expr INTO expr GIVING identifier [ROUNDED] ...
DIVIDE expr BY expr GIVING identifier [ROUNDED] ...
DIVIDE expr BY|INTO expr GIVING identifier [ROUNDED]
REMAINDER identifier
HOME$
IF expr { report-list }
IF expr { report-list } ELSE { report-list }
INSERT record
MOVE expr TO field
MULTIPLY expr BY identifier [ROUNDED] ...
MULTIPLY expr BY expr GIVING identifier [ROUNDED] ...
NEXT-LOOP
NL$
PUT expr ...
READ record
READ record FOR UPDATE
READ record BY key-field
READ record FROM field
READ record FROM field BY key-field
READ record VIA field
READ record VIA field BY key-field
SET condition-name TO TRUE|FALSE
SKIP$(number)
SUBTRACT expr FROM field ...
SUBTRACT expr ... FROM identifier [ROUNDED] ...
SUBTRACT expr ... FROM expr GIVING identifier [ROUNDED] ...
SUM expr INTO accumulator-array
TAB$(number)
UPDATE record
WHILE expr { report-list }

Where:

name
The report name. This must be unique within a TQL

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 57

program. At execution time the user will request the
production of this report by referring to this report name.

ON printer
The clause establishes a default report destination. This
clause is mandatory.
Any valid printer name (as accepted by the TIPPRINT
interface) may be specified, for example:

AUX0, AUX1, etc.

NO HEADING
This clause suppresses the automatic heading page that
TQL generates to identify the originator of the report. This
automatic heading contains the date and time, the
originating terminal name and the TQL command that
produced the report.

field The name of a data field. If the field is part of an OCCURS
clause it may be followed by the occurrence number such
as PART-NUM(3). If no occurrence number is given then
the first occurrence is assumed. The field name may also
be subscripted by some other field. A field used as a
subscript must be a binary halfword (i.e. PIC 9(4) COMP-
4). A subscript field may be part of a record structure or
working-storage field.

DO number {report-list}
Indicates that the instructions coded inside the
parentheses are to be repeated the specified number of
times. This is the simplest way to process several records.
The "loop" will be exited early if any imbedded READ
statement fails to retrieve a record from the file.

expr A standard TQL expression (see TQL Expressions).

ADD The arithmetic expression is evaluated, added to the value
of the "field" and the result is stored in the "field".

BREAK
Exit a loop early.
Note: Only valid in a loop construct.

COMMIT
All pending record updates are done immediately and TIP
will commit all record updates and unlock the record keys.
If the system stopped after this point all updates would be
completed and would not be rolled back.

COMPUTE
The arithmetic expression is evaluated, and the result
stored in the field.

DELETE record
The named record is immediately deleted from its file.

TIP Query Language

58 Draft 2.5 - Confidential IP-627

DIVIDE
Used for expression division producing specified
remainder.

HOME$
Force a skip to a new page (top of form). The system field
"PAGE$" is incremented by one and the system field
"LINE$" is set to zero.

IF The relational expression immediately following the IF
statement is evaluated. If the expression evaluates to true
the code which follows will be executed. If the expression
evaluates to false the code which follows the word ELSE
will be executed. If no ELSE clause was given TQL
continues with the next statement after the IF clause.

INSERT record
Directs TQL to add the specified record to the file
immediately. The user program is responsible for ensuring
that all fields of the record contain valid data.

MOVE
The arithmetic expression is evaluated and the result is
stored in the "field".

MULTIPLY
Used for expression multiplication producing specified
remainder.

NEXT-LOOP
Go to the top of loop. Involves loop counter increment.
Note: Only valid in a loop construct.

NL$ Force a new line. The current contents of the print line are
printed. The system field LINE$ is incremented by one.

PUT expr
Used to signify that the expression is to be sent for output.
The following code is identical:

READ MY-REC
DSPLY-1 DSPLY-2 DSPLY-3

and

READ MY-REC
PUT DSPLY-1 DSPLY-2 DSPLY-3

The PUT statement provides consistency in the statements
all statements now start with a verb.

PUT also allows for easy handling of field-names after
verbs that take multiple receiving items (MOVE, ADD...)
For example, instead of:

MOVE "A" TO ITEM-1
{ item-list }

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 59

you would use:

MOVE "A" TO ITEM-1
PUT item-list

Note: The use of PUT is optional. We recommend that
you use PUT since future releases of TQL will enhance the
use of the PUT verb. Since the use of PUT removes some
ambiguities in the language its use may become
mandatory. Inglenet supplies a conversion program (cvttql)
for your TQL programs.

READ record
Read the specified record name.

READ record FOR UPDATE
This command reads the record and imposes a record lock
(FCS-GETUP) even if the end user is only processing an
inquiry type of command. This allows TQL programmers to
update records and is usually followed by an UPDATE or
DELETE command.

READ record BY field
field is the name of a data item that defines a key for the
file being read. This clause may be used to indicate that
the file is to be read via an alternate key. The reserved
names KEY1 ... KEY10 may be used to imply the key
location (when it is undesirable or not practical to use a
defined field name).

READ record VIA field
field is the name of the data item containing the key of the
desired record.

READ record FROM field
field is the name of the data name containing (part of) the
key for the secondary record. The file is read sequentially
until this first portion of the key in the record no longer
matches the value in field.

SET condition-name TO TRUE|FALSE
This verb provides for level 88 support. A condition name
can also be set to FALSE if a WHEN...FALSE literal is
specified.

SKIP$(number)
TQL advances the output position (horizontally) to the right
by the number of columns indicated. Number must be
greater than or equal to 0 and less than or equal to 255.

SUBTRACT
The arithmetic expression is evaluated, subtracted from
the value of the field and the result stored in the field.

TIP Query Language

60 Draft 2.5 - Confidential IP-627

SUM expression INTO accumulator-array
Accumulate totals in an accumulator array (defined in
WORKING STORAGE).

Used for accumulating totals of level breaks or control
breaks.

Any accumulator arrays specified in SUM statements are
cleared as required automatically by execution of
CONTROL FOOTING code.

TAB$(number)
TQL positions the output pointer into the print line to the
exact column specified by number. This statement may
position the output pointer after the current column location
OR before the current column location. The programmer is
responsible for the results of overlapped fields. Number
must be greater than or equal to 0 and less than or equal
to 255.

UPDATE record
The named record is immediately written back to the data
file.

WHILE
The statements in parentheses following the WHILE are
executed repeatedly until the relational expression is false.

AT END
When all records have been processed the coding
following the AT END clause will be executed. This clause
is optional. This provides the capability to generate final
totals or summary information etc. This clause must
appear as the last clause in a report definition.
If the TQL command line begins with AT END the
command is deferred until the end user does a CLOSE
command and a selection file is active. The end user may
then do a record selection using the SELECT and/or SORT
commands and then CLOSE TQL. The command as
entered from the command line would look like the
following:
TIP?►OPEN TSTTQL AT END EXPORT (COMPANY MGR TELEPHONE) ON
PRNTR

Note: This function should only be invoked under some
application program control.

Example:

REPORT DIVISION.
QOH: HOME$
TAB$(15) 'PART - QUANTITY ON HAND'
TAB$(70) 'PAGE' PAGE$ NL$
'PART NUMBER'

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 61

TAB$(20) 'DESCRIPTION'
TAB$(50) 'QUANTITY' NL$
DO 50 {
READ PARTFIL,
PM-NUM
TAB$(20) PM-DESC
TAB$(50) PM-QTY NL$
}
ON AUX1.

For each logical page of this report the following is done:

 a new page is forced (HOME$)
 a two line page title is printed.
 up to 50 PARTFIL records are read.
 for each record the fields PM-NUM, PM-DESC and PM-QTY are

printed on a separate line.
The default destination of the report is AUX1. The TQL user may override
this at execution time.

If NL$ was omitted, all 50 print lines would be constructed in the print line
buffer and one line representing the destructive intersection of all the data
would be printed instead of 50 lines!.

EDIT$ - Report Field Editing
The EDIT$ function provides a broad range of editing capabilities.

Syntax:

EDIT$(field,mask[,startcol])

Where:

field
The name of the field that is to be edited. This field may be
a numeric or alphanumeric field. Subscripted fields are
also permitted.

mask
A character literal (enclosed in quotes) that defines the edit
mask that is to be used to edit the field. More information
about the possible edit masks follows this syntax
description.

startcol
An optional numeric literal that specifies the desired
starting column of the edited field in the current report line.
If this parameter is omitted, the result of the EDIT$
operation will begin in the current output column.
If this parameter is specified, the EDIT$ output will begin in
the column specified.

TIP Query Language

62 Draft 2.5 - Confidential IP-627

For numeric fields, the possible editing specifications are similar to those
provided by standard COBOL and the TIP Message Control System
(MCS).

Numeric fields are decimal place aligned with respect to the edit mask.
Extraneous digits to the left of the decimal place are truncated on the left;
decimal digits are rounded to the specified number of decimal places.

The following table shows various example masks along with example
input and output results:

Mask Input Output Description

"ZZZ,ZZ9.99" 1234.567 " 1,234.57" Zero suppression.
Comma and
decimal place
insertion. Decimal
place rounding

"-ZZ,ZZ9" -45 " -45" Leading minus
sign

"ZZ,ZZ9-" -123 " 123-" Trailing minus
sign

"(ZZZ,ZZ9.99)" -145.3 " (145.30)" Floating
parentheses for
negative values

"($ZZ,ZZ9.99)" -145.3 " ($145.30)" Floating
parentheses and
$ for negative
values

"$**,**9.99" 1234.56 "$*1,234.56" Check protection
with $

"***,**9.99" 1234.56 "**1,234.56" Check protection
without $

"ZZZ,ZZ9.99CR" -1234.56 "
1,234.56CR"

CR suffix for
negative values

"ZZZ,ZZ9.99DB" -1234.56 "
1,234.56DB"

DB suffix for
negative values

"Total:
Z,ZZ9.99"

876.54 "Total:
876.54"

Leading
commentary

"99/99/99" 871115 "87/11/15" Date format

"99:99:99" 120800 "12:08:00" Time format

"X X X" "ARC" "A R C" Alphanumeric
character
selection

The basic rules for EDIT$ are summarized as follows:

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 63

A mask character of "Z" or "9" represents a digit selector for numeric
fields; the former implies zero suppression, the latter displays the digit
regardless of the value.

A leading minus sign - will "float" to the left of the first significant digit or fill
character if the numeric field being edited is negative.

A trailing minus sign in the mask will be output to the right of the right
most digit if the numeric field being edited is negative; otherwise a space
will appear.

If the edit mask is surrounded by parentheses and the edited value is
negative, the left parenthesis will "float" to the left of the first significant
digit or fill character and the right parenthesis will be output. If the edited
field is positive the right parenthesis will be replaced by a space.

A trailing "CR" or "DB" in the mask will be output to the right of the right
most digit if the numeric field being edited is negative; otherwise, two
spaces will appear.

A mask character of "X" represents a character selector (for alphanumeric
fields).

Extraneous characters in the edit mask that follow the last digit or
character selector are ignored.

Edit masks are either alphanumeric or numeric. If the mask contains an
"X" it is alphanumeric otherwise it is taken as numeric. If you wish to use
any special editing characters as normal text use the backslash (\)
character to escape the special meaning. (i.e. “TE\XT: XXXX” will only
substitute for the last four X's.)

For check protection with or without $, "Z" and "*" are mutually exclusive
according to the COBOL-85 standard.

Report Heading and Footings

Report Heading
This defines what is printed or displayed as the first part of the report. It
can be any valid TQL function and may, for example:

 print the first page of a report,
 initialize some data fields,
 read an initial set of records or,
 perform another start up procedure.

Example:

REPORT HEADING {
DO 25 {"**"} NL$
'Start of Customer Name and Address Listing' NL$
' on ' EDIT$(YYMMDD$,'99/99/99') NL$

TIP Query Language

64 Draft 2.5 - Confidential IP-627

DO 25 {"**"} NL$
}

Report Footing
This defines what is printed or displayed as the last part of the report.
This can be any valid TQL function. You might use this function to display
some information accumulated during the report generation.

Example:

REPORT FOOTING {
DO 25 {"**"} NL$
'End of Customer Name and Address Listing' NL$
TTLNUM ' customers printed' NL$
DO 25 {"**"} NL$
}

Page Heading
This defines what is printed or displayed at the top of every page of the
report. The page heading procedure is performed on page overflow or
after any HOME$ command. The page heading logic will work regardless
of the number of lines on a page. For example, a batch report may have
66 lines per page while printing to AUX0 (the interactive terminal) will only
have 24 lines on a page.

Example:

PAGE HEADING {
TAB$(10) 'Page ' PAGE$
TAB$(30) 'Name and Address Listing' NL$
'Number' TAB$(15) 'Name'
TAB$(45) 'Address' NL$ NL$
}

Page Footing
This defines what is printed or displayed at the bottom of every page of
the report. This procedure is performed just before the bottom of the page
is reached or just before any HOME$ command.

Example:

PAGE FOOTING {
TAB$(10) 'Bottom of Page ' PAGE$ NL$
}

Control Breaks

Control Heading
A control heading defines what happens at the beginning of a set of
records with a new value in a specified field.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 65

The order in which CONTROL HEADINGS is defined is important. The
order defines the major to minor order of the break level.

Example:

CONTROL HEADING ON state {
'Listing for the state ' STATE NL$ *> LEVEL$ will be 2
}
CONTROL HEADING ON city {
' listing for city ' CITY NL$ *> LEVEL$ will be 1
}

The above example illustrates records that are ordered by STATE, and by
CITY within STATE.

Control Footing
A control footing defines what happens at the end of a set of records with
a new value in a specified field.

The order in which CONTROL FOOTINGs are defined is important. The
order defines the minor to major order of the break level.

Example:

CONTROL FOOTING ON state {
'Total sales for state ' STATE ' is ' TTL-SALES (LEVEL$)
NL$
}
CONTROL FOOTING ON city {
' Total sales for ' CITY ' is ; TTL-SALES (LEVEL$) NL$
}

The field LEVEL$ is set to 1 for indexing an accumulator array to obtain
necessary totals. LEVEL$ is set to 2 the level is set according to the
sequence of field usage.

At the end of control break processing all accumulator arrays used in the
report are reset to zero for every table entry up to and including the value
of LEVEL$.

Control Footing on Final
A control final defines what happens at the end of the report.

Example:

CONTROL FOOTING ON FINAL {
'Grand total all sales is ' TTL-SALES (LEVEL$) NL$
}

TQL Execution Cycle

This section outlines (in point form) the cycle performed by the TQL run-
time interpreter for the various commands given to it. This may help
programmers understand how to use the Declaratives section effectively.

TIP Query Language

66 Draft 2.5 - Confidential IP-627

READ CYCLE
Step Description

Step 1: FCS-SETL to supplied key value, or last key if
continuing an inquiry.

Step 2: If continuing and using secondary index then skip
over records until same primary key as last time
through.

Step 3: Get next record.

Step 4: If end of file or TO key reached, STOP.

Step 5: If record ID clause is false, go to Step 3.

Step 6: Perform ON READ coding.

Step 7: If NEXT RECORD set by ON READ, go to Step 3.

Step 8: If the IF clause is false, go to Step 3.

Step 9: Perform any command line MOVEs.

UPDATE CYCLE
Step Description

Step 1: Perform READ (see READ CYCLE above.)

Step 2: FCS-GETUP record.

Step 3: Move fields to MCS area, computing expressions
(MOVE, ADD, etc.)

Step 4: Display screen with underscores.

Step 5: Get reply.

Step 6: Move fields from MCS area to record checking
VERIFY clauses.

Step 7: If any verify errors then send error message and go
to Step 5.

Step 8: Perform ON WRITE (all READS are with update).

Step 9: If any errors go to Step 5.

Step
10:

FCS-PUT all records read with update. One record of
each type can be held.

TQL Interface to DMS
TQL can access DMS database structures, either by themselves, or in
combination with conventional files.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 67

To use TQL in this manner requires TIP/dbi and the schema definition
utility schema. The schema must already exist before trying to use TQL to
access the database.

This section addresses the various aspects of the TQL/DMS environment
and is intended to supplement the "base" TQL documentation.

You should be familiar with:

The TQL environment, and with the concepts of DMS, especially with
regard to the online environment.

SCHEMA Definition

In a non-DMS TQL environment, the normal practice is to precompile a
file definition and record definition. To access a DMS database, you must
precompile a schema definition, which acts as the TQL file and which also
contains all the possible records which can be accessed through that
schema.

With conventional files, the programmer can optionally code the record
definition in the TQL program. When utilizing the TQL/DMS environment,
you must use precompiled records. The record can not be defined in the
program. However, the record and schema (file) information is
automatically created as a consequence of using the TIP/dbi schema
compiler. All that is required by TQL is to define the schema to TQL. This
is done using the TQLMON AS command (See AS - Add Schema).

TQL/DMS Programming

Although TQL programs may intermix DMS and conventional file I/O, in
this document the aspects of DMS programming are separated from the
"base" TQL documentation, for clarity. Only those TQL program Divisions
and Sections which are affected are discussed.

Various TQL/DMS statements require the use of a set name. These set
names are always coded as character literals where the literal is the
actual name of the set being used. For example: 'PART-SET'.

Literals used as set names must be a valid set name from the DMS
schema being referenced as a TQL FILE. Literal set names cannot
exceed 16 characters in length. Trailing spaces need not be supplied.

TQL will attempt to validate any set names used in a program; however, it
is possible to a set name to be valid at compile time but not a run time.. If
incorrect set names are used, an appropriate error condition is issued
when the executing TQL program attempts to use the incorrect name.

TIP Query Language

68 Draft 2.5 - Confidential IP-627

TQL/DMS: DATA DIVISION

Syntax:

FILE file-name.
[RECORD rec-name.]
[ALLOW, VERIFY, ID, clause(s)]
[ALLOW DELETE]
[ALLOW DELETE SELECTIVE]
[ALLOW DELETE ONLY]
[ALLOW DELETE ALL]

As discussed earlier, the "file-name" specified here is the name of the
Schema which has been compiled with the TIP/dbi schema compiler.
Only those records in the Schema which are to be used in this TQL
program need be referenced. All records must be precompiled.

Although conventional file record names are limited to eight characters by
TQL, names of DMS records in TQL may be up to 16 characters (the
length supported by the DMS pre-compiler). The same ALLOW, VERIFY,
etc., clauses that are applicable to conventional records, apply to DMS
records as well.

The ALLOW DELETE clause can take one of four different forms. The
form instructs TQL which type of DMS DELETE it should issue against
the named record, when a DELETE request is given.

The meaning of each DELETE variation is fully described in standard
DMS documentation.

TQL/DMS: DECLARATIVES
DECLARATIVE clauses allow the programmer to designate certain
functions that are to be done as a side effect of an ADD, DELETE,
READ, or WRITE of a particular TQL record. These same clauses are
applicable to DMS records as well.

The TQL verbs ADD, READ, and WRITE are the equivalent of the DMS
verbs STORE, FETCH, and MODIFY.

The following statements are TQL/DMS statements which may be issued
in the DECLARATIVES section, in addition to statements already defined
in the "base" TQL documentation.

Syntax:

IF | IFDMS record [NOT] MEMBER 'set-name' {stmnt-list}
IF |IFDMS record [NOT] MEMBER 'set-name' {stmnt-list}
[ELSE {stmnt-list}]
IF | IFDMS record [NOT] EMPTY 'set-name' {stmnt-list}
IF | IFDMS record [NOT] EMPTY 'set-name' {stmnt-list}
[ELSE {stmnt-list}]
INSERT record INTO 'set-name'
READ record FROM field [BY key-field]
READ record VIA field [BY key-field]

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 69

READ record USING field
READ record OWNER 'set-name'
READ record SET [PRIOR] 'set-name'
READ record AREA
READ record CURRENT
READ record SORTED 'set-name' VIA field
REMOVE record FROM 'set-name'

Note: "GET" may replace "READ" in the statements above.

Where:

GET record ...
As with conventional TQL file I/O, use of GET directs TQL
to read the specified record for informational purposes
only.

Records which are READ will participate in UPDATE
operations that occur at runtime, whereas those records
retrieved with a GET are strictly retrieved for information
only.

IFDMS record [NOT] MEMBER 'set-name'
The test of SET membership of record within 'set-name'
will be made.

If true, the statement-list inside the parentheses will be
executed.

If false, the statement-list in the parentheses following the
ELSE will be executed.

If no ELSE clause is given, TQL continues with the next
statement after the IFDMS clause.

Nested IFDMS and/or IF clauses are supported to a depth
of 10.

IFDMS record [NOT] EMPTY 'set-name'
Similar to the MEMBER IFDMS statement.

This statement tests whether the 'set-name' owned by
record is empty.

Unlike a regular DML IF EMPTY statement, the set owner
record name is required for the TQL IFDMS EMPTY
statement.

INSERT record INTO 'set-name'
This statement is used to do a DMS INSERT of record into
'set-name'.

The record which owns this set must have been read prior
to the time the insert is attempted.

TIP Query Language

70 Draft 2.5 - Confidential IP-627

These INSERT statements are only processed during TQL
operations in which the named record is either being
updated or added to the database.

More importantly, regardless of which DECLARATIVE
"ON" clause an INSERT is used in, it will always by
deferred until just after the named record has been
updated or added to the database.

READ record FROM field [BY key-field]
This statement may only be used against DMS records
which have been defined to DMS with INDEX keys.

'field' is the name of a field holding (all or part of) the key
for a secondary record being processed.

The index structure is read sequentially, and records are
returned until this first portion of the key in the record no
longer matches the value in 'field'.

The optional BY clause may be used to designate the
name of the key field to be used, if other than key number
one is desired.

READ record VIA field [BY key-field]
This statement may be used on DMS records which either
have a CALC key or INDEX keys.

'field' is the name of a field which contains the key of the
record to be read.

If the READ is being done because a record is about to be
ADDed or UPDATEd, then the READ will result in a lock
being placed on the record in question, and the record will
participate in the update operation when it occurs.

The optional BY clause may be used to designate the key-
field to be used in the operation, if other than the default is
to be used.

The default for CALC records is the CALC record key, the
default for records whose location mode is "indexed", is
key 1.

READ record USING field
This statement is used to retrieve a record by its actual
database key (equivalent to DMS FORMAT 1).

'field' must be a data field defined as S9(8) COMP (The
standard database key format).

READ record OWNER 'set-name'
This statement instructs TQL to retrieve the named record,
which is defined to DMS as the owner of 'set-name'.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 71

The MEMBER record of the set should have just previously
been read (with some other READ/GET statement).

If the "just read" record does not currently participate as a
MEMBER of the named set, TQL will react as it would with
any other "no-find" situation.

READ record SET [PRIOR] 'set-name'
This statement instructs TQL to retrieve the record which is
a MEMBER of 'set-name'.

The default is to retrieve in the NEXT of SET direction; the
optional word "PRIOR" can be used to retrieve in the
opposite direction.

The set being used must be defined with prior pointers in
order to use the PRIOR option.

When using this statement as a "secondary" read on a
DISPLAY, set "continuity" is automatically maintained from
"screen to screen" by TQL (such as when utilizing a
MORE$ loop on a DISPLAY).

NO special coding is required to reestablish set positioning
at the beginning of each MORE$ loop.

READ record AREA
This statement instructs TQL to retrieve records
sequentially from the DMS AREA in which they reside.

Each execution of this command results in the next logical
named record being retrieved, regardless of what other
activity may have taken place in this same DMS AREA.

When retrieving records by AREA with DMS, you must
initially retrieve the FIRST record of the area, and then
request the NEXT record of the area on all subsequent
retrievals. This detail is handled automatically by TQL.

READ record CURRENT
This statement should not be used in the majority of TQL
programs, as record currency is re-established, as needed,
by TQL.

This is a special purpose statement which is used in rare
instances where ambiguity prevents TQL from correctly
handling currency considerations automatically.

This is more fully discussed in . When this statement is
used, no "ON" clauses are executed for the named record.
It simply "re-establishes" as current, a record which had
previously been read.

TIP Query Language

72 Draft 2.5 - Confidential IP-627

READ record SORTED 'set-name' VIA field
This statement instructs TQL to issue a DMS Sorted
retrieval (DMS Format 6) against the record which belongs
to 'set-name'.

The specification "field" is the name of a field which
contains the key of the record to be read.

This statement will only retrieve one record. If more
records are desired from the 'set-name' specified, the
"READ record SET" statement can be used to proceed
from the record originally retrieved with this statement.

REMOVE record FROM 'set-name'
This statement instructs TQL to issue a DMS REMOVE of
the specified record from the specified 'set-name'.

TQL/DMS: DISPLAY/REPORT
As with conventional file I/O, all I/O statements used in the TQL
DECLARATIVES SECTION, can also be used in the DISPLAY and
REPORT DIVISION. The one additional statement that can be used in
these DIVISIONs is the general READ statement of the format:

READ record [BY key-field]

This is generally referred to as the "primary read", around which the
runtime TQL logic is generally driven. Although simple in format, its actual
function when dealing with DMS records can be quite diverse, depending
on the LOCATION MODE within DMS, of the record being retrieved.
These variations are discussed in this section.

READ: Indexed records
When retrieving DMS records by Index keys, regardless of the actual
DMS LOCATION MODE, the READ acts identically to a READ against a
conventional Indexed MIRAM file. The initial retrieval will return the first
record in the index structure, or if an actual 'key-value' is supplied at
runtime, the initial retrieval will return the first record with that key value or
the next highest key value. Any subsequent retrievals will continue from
the first record retrieved. Runtime FROM and TO commands may be
used to limit the retrievals based on low and high key values supplied by
the end user.

If the DMS record is defined as "LOCATION MODE INDEXED" then a
general read (without a BY) will apply to index key number one. Use the
optional BY clause to designate that the read should use some other
index 'key-field'.

If the DMS record is not defined as "LOCATION MODE INDEXED", and
retrieval is desired by an index key that has been defined for that record,
use the BY clause to designate the desired key.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 73

Use the runtime BY clause to retrieve records on some index key other
than key one.

The remaining interpretations of the READ command apply to records
that are not of LOCATION MODE INDEXED and are not being retrieved
with the BY clause (such as a CALC LOCATION MODE record being
retrieved on an INDEX which has been defined for that same record).

READ: CALC records
When the generalized read statement is for a record whose DMS
LOCATION MODE is CALC, the read reacts differently, depending on
runtime requests.

If the user issues a runtime command that does not supply a record key
for retrieval, then CALC records will be retrieved in the order in which they
appear in their particular DMS AREA. Use function key two (as a run-
time NEXT record request), to continue to return records by area.

If the end user does supply a key, the requested record will be retrieved
randomly, by the CALC record key. Also, when a key has been supplied,
the use of is interpreted as a request for the NEXT record with the same
CALC key (the DMS Format 5 NEXT DUPLICATE retrieval.)

In summary, with no key supplied at runtime, CALC records are retrieved
by area. When a key is supplied, only those records with that key are
retrieved.

READ: Direct and Via Set records
When the generalized read statement is for a record whose DMS
LOCATION MODE is Direct or Via Set, these records will be retrieved on
an area basis.

Records of this type are usually not retrieved through the "primary" TQL
read, except for the purpose of doing REPORT summaries, or possibly
for EXPORTing all records of a particular type to a personal computer.

TQL/DMS: Currency Considerations

In conjunction with TQL programming, it is important to understand how
TQL programs are affected by DMS record currency. Generally speaking,
currency should rarely be of concern in the typical TQL/DMS program, as
TQL takes steps to establish the appropriate currency required for various
verbs and to maintain currency continuity from "screen to screen" when
used interactively.

Some types of database structures, however, tend to introduce
ambiguities into the picture, due to the fact that TQL operates within the
framework of an existing, fixed "logic cycle". These problems will be
discussed in this section.

TIP Query Language

74 Draft 2.5 - Confidential IP-627

With TQL DISPLAY processing, currency is cleared at the beginning of
each new terminal command. Thus, the currency of one runtime
command will not conflict with that of another command. However, when
a single command (for example "listing" a large number of records) spans
numerous output screens, TQL automatically maintains currency
continuity from "screen to screen". Once again, this need not be of
concern to the TQL programmer.

Another point deals with the currency which is required prior to execution
of certain DMS verbs. For example, in a COBOL DMS program, if a user
intends to INSERT a record into a set, he must make sure this record is
CURRENT OF RUN-UNIT, or an error will occur. TQL automatically
makes the required record current prior to issuing the DMS verb in
question so that this is of no concern for the TQL programmer.

The major concern with currency, that TQL does not handle
automatically, is one that occurs when utilizing a database structure
known as a "Bill of Material" structure. This does not refer necessarily to a
"Bill of Material" usually associated with Manufacturing systems. This
term is used in a broader sense to describe any database structure which
consists of two SET relationships defined between the same two
RECORDS.

If this environment is not applicable to your particular database
environment, you may ignore the rest of this section, as the remaining
information is directed to the reader who is already quite familiar with "Bill
of Material" structures, and their inherent DMS programming problems.

Example:

Let us look at an example. Specifically we will look at the Manufacturing
structure from which the database term "Bill of Material" was derived:

This structure presents no problem if we want to simply "read" PART-
MASTER records, and then "read" only the PROD-STRUCTURE records
using one of the sets indicated. This structure does present a problem
when we need to use both sets in a single TQL program and if we modify
our intended logic so that we issue a "READ PART-MASTER OWNER
'WHERE-USE-SET' for each read of a PROD-STRUCTURE record.

The problem arises from the "fixed logic" environment of TQL. TQL
generally assumes that a record accessed in a "primary" TQL read will
not also be accessed in some later "secondary" read. This example
causes two problems, both arising from the secondary retrieval of a
PART-MASTER record:

Destruction of the desired currency within the COMPONENT-SET.

Loss of currency (or positioning) within the original PART-MASTER
record retrieval issued as the "primary" read.

There is, fortunately, a solution for both problems. The following TQL
program makes use of both, that are described in the text following the
program.

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 75

IDENTIFICATION DIVISION.
PROGRAM-ID. TQLBOM 'BILL OF MATERIAL EXAMPLE'.
DATA DIVISION.
FILE SMC033.
RECORD PART-ANCHOR.
RECORD PART-MASTER.
* PART-KEY
* PART-DESCRIPTION
ENTRY VIA PART-ANCHOR 'PART-SET'
SORTED BY PART-KEY.
RECORD PROD-STRUCTURE.
* STRUCTURE-QTY
DECLARATIVES SECTION.
ON READ OF PROD-STRUCTURE
GET PART-MASTER OWNER 'WHERE-USE-SET'
READ PROD-STRUCTURE CURRENT.
DISPLAY DIVISION.
LIST: READ PART-MASTER, PART-KEY, PART-
DESCRIPTION
MORE$ 10 (READ PROD-STRUCTURE SET 'COMPONENT-
SET'
PART-KEY, PART-DESCRIPTION, STRUCTURE-QTY)
USING TQLBOM01.

(Commented lines under each record are used to indicate in which
records the DISPLAYed data items are contained).

The program first retrieves an initial PART-MASTER record (probably
from a key supplied by an end-user at runtime). It then enters a repeat
loop which is intended to show the "components" of the original part. This
is done by retrieving PROD-STRUCTURE records from the
COMPONENT-SET. By use of a DECLARATIVE ON statement, each
read of a PROD-STRUCTURE (in the MORE$ loop) results in a retrieval
of its WHERE-USE-SET owner, which is another PART-MASTER!

The OWNER retrieval is done with a GET statement. This is extremely
important!

For the following types of TQL retrieval statements:

READ record OWNER 'set-name'
READ record USING field
READ record VIA field

the use of GET instead of READ, informs TQL that the retrieval should
have no permanent effect on currency for the record involved. The GET
of the PART-MASTER OWNER makes that record current at that
moment, and, any further retrievals at that point would be based on that
particular record's currency.

TIP Query Language

76 Draft 2.5 - Confidential IP-627

When the TQL program eventually returns to the "primary" READ, issued
at the beginning of the DISPLAY (on line 23), TQL will automatically
restore the currency for the last record retrieved with the "primary"
READ.

You might think of the secondary GET to the PART-MASTER as having
only a transient effect on its currency. Permanent currency is only
established with the use of a READ statement. This "transient" currency
feature is only supported for the three statements listed above, as these
are the statements most likely to be involved in an ambiguous "Bill of
Material" structure.

Even with this facility in place, we still have a problem with the program.
We need to reestablish currency for the PROD-STRUCTURE record,
after each retrieval of a PART-MASTER Owner. The READ CURRENT
statement (coded on line 20) allows the programmer to continually restore
the correct COMPONENT-SET currency that is destroyed each time a
PART-MASTER Owner is retrieved (line 19.) This should be the only time
that a TQL programmer should have to manually establish record
currency.

As was mentioned previously, this procedure can be quite confusing
unless the entire "Bill of Material" concept is well understood. Most TQL
programmers will hopefully not be faced with coding which involves these
types of structures. If they do exist in your system, the facilities described
above should allow you to deal with them in TQL programs.

Runtime Database Errors

DBMS errors which occur during TQL session initialization, such as not
having the DBMS job running in the system, or not having the correct
DMCL loaded, will simply be reported to the user with an appropriate
informational message which explains the reason the TQL session can
not be started.

If, during the execution of a TQL/DMS program, a database rollback
occurs due to record/area contention (QW15 and QW18), an
informational message will be displayed to explain that the session was
aborted due to some type of resource contention, and must be restarted.

All other "unexpected" runtime errors are reported in a format which is
intended for analysis by the TQL programmer. This information (similar to
that displayed in the Unisys supplied DMS-STATUS modules) is
displayed on the standard TIP screen format TF$DMSER that is
illustrated below.

Data Base Management System Error Has Occurred 23 JAN 99 11:06

Aborting program

Call return address

TQLCC - TQL Compiler

9-Jan-2004 Draft 2.5 - Confidential 77

Error status

Rollback status

Error record

Error set

Error area

Last good record

Last good area

Dbkey page/line

Direct dbk page/line

 _

Once displayed, this error screen will remain until some response is given
from the keyboard (, , etc.), at which time the TQL session will be
terminated.

The error status and rollback status codes displayed on the TF$DMSER
screen format will always be the standard DMS errors, extracted directly
from the DMCA of the TQL program. Users should see the Unisys DMS
documentation for the appropriate descriptions.

Examination of the LAST GOOD RECORD/AREA fields, as well as the
ERROR RECORD/SET/AREA fields will normally lead the TQL
programmer to the portion of the program that is causing the DMS error.

TIP Query Language

78 Draft 2.5 - Confidential IP-627

TQLRUN - TQL Runtime Interpreter

TQLRUN Features
The supplied transaction code OPEN begins the execution of a TQL
program. While executing the program a user can:

 request the display of data using a pre-defined display format
 request the generation of a pre-defined report
 list selected fields (at the terminal using a free-format display)
 print selected fields (at the site printer or an auxiliary printer)
 export data to a file or printer
 apply constraints to the available data by including with a command

certain conditions that must be met before data is to be displayed.
 select subsets of data for further processing
 sort selections of data in an alternate sequence
 calculate simple statistical values (e.g., total, average, minimum, etc.)
The following sections describe the initial execution of a TQL program
and the various commands that are available to the TQL user.

Function Keys
The TQL function keys are listed in the table below along with the default
TIP function keys assigned to them and a brief description of their use.

The system administrator can modify the function key assignments by
using the TQLMON UC command. Verify the function key assignments
for your site with your administrator.

TQL Function
Key

Default TIP
Function Key

Description

CANCEL MSG-WAIT Cancel or terminate the
current operation.

REFRESH F1 Refresh the current screen.

ACK F2 Acknowledge operations
such as deleting a record.

NEXT F2 Advance to the next
record(s).

PREV F3 Return to the previous

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 79

record(s).

UPDATE F4 Update the currently
displayed record.

MORE F9 Show more detail records.

DELETE F10 Delete the currently displayed
record.

TQL Program Execution
The OPEN transaction causes the TQL interpreter to execute a TQL
program. All TQL programs operate interactively to allow the user to enter
commands that are processed by the TQL program.

It is also possible to catalog a TQL program as a transaction code. When
this is done the program name is all that is keyed in at the TIP prompt.
(See Direct Execution of TQL Programs)

Syntax:

OPEN [progname [command]]

Where:

progname
Name of the TQL program to run. If a program name is not
specified then a menu screen is displayed. (See Additional
Considerations)

command
Optionally use this parameter to execute the specified
command.
The inclusion of this initial command bypasses the display
of the standard TQL prompt screen (See Additional
Considerations) since the command is already known.
When this command is completed, the OPEN transaction
will terminate normally. This feature is provided primarily to
allow TQL programs (and an associated command) to be
executed by an external transaction. The TQL EXECUTE
command is an important command for this type of
processing.
The backslash character (\) may be used to separate
multiple commands entered at the command prompt (See
Multiple TQL Commands).

Example:

►OPEN TQLTSP EXECUTE REPORT1
►OPEN TQLTSP EXECUTE SELECT1 \ RPT1 ON AUX1

TIP Query Language

80 Draft 2.5 - Confidential IP-627

Menu Screen
As mentioned above, if the user does not supply the name of a TQL
program then a menu screen similar to the following one will be
displayed. The user may then enter the selection number of the desired
program and press the TRANSMIT key, or press the CANCEL key to
terminate the OPEN transaction.

The menu screen can be disabled by a configuration option that may be
modified using the TQLMON UC command.

In the column labelled PC, a ‘P’ indicated that the program is password
protected, a 'W' means item compiled with warnings, a 'C' means item
requires recompile.

Prompt Screen
If the program selection is valid the following prompt screen is displayed.
This screen format is used to enter runtime TQL commands

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 81

Multiple TQL Commands

You may enter multiple TQL commands by separating each command
with a backslash character (\). Multiple commands may be entered into
the TQL prompt screen by the end user, on the OPEN command line, or
supplied in the CDA by an application program.

Example:

OPEN TQLTSP PRINT NAM-ADR \ PRINT NAM-ADR
IF NO-TERM > 50

The above command executes the TQLTSP program and prints the NAM-
ADR report using every record in the file. It then prints the NAM-ADR
report a second time, this time only including the records for which the
field NO-TERM is greater than 50. The OPEN transaction then terminates
normally.

TIP Query Language

82 Draft 2.5 - Confidential IP-627

AD HOC Modifiers

When a TQL command is executed the user can supply one or more
AD HOC modifiers to alter the behavior of the specified command. These
modifiers may constrain the data to certain ranges or conditions, or
perform some other operation in addition to the displaying or reporting of
data.

This section provides a reference for all the available AD HOC modifiers.

BY

The BY modifier allows the user to specify an alternate key to use for the
execution of a command.

If a specific key field name is not known, the reserved names KEY1 ...
KEY10 may be used to implicitly specify a key of the file.

Syntax:

BY { field-name | KEYn }

Where:

field-name The field name of a key for the file that is being
accessed.

KEYn A name in the range from KEY1 to KEY10 to explicitly
specify a key for the file.

Example:

PRINT REPORT1 BY CUSTOMER
PRINT REPORT2 BY KEY3

Additional Considerations:

When formatting key-values (including FROM and TO values) TQL uses
the declared PICTURE clause information for a field that is specified in a
BY clause. If you use the reserved field names KEY1 ... KEY10, TQL
references the appropriate record layout for the first definition that applies
to the specified key field.

If a group item name is used in a BY clause, TQL will use the definition of
the elementary item or items to determine how to interpret the key data.
Using the following data definition, the accompanying table shows how
some sample runtime clauses would be interpreted.

...
05 SECOND-KEY.

10 WAREHOUSE PIC 9(2).
10 AISLE PIC 9(6).

05 K2 REDEFINES SECOND-KEY PIC 9(8).

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 83

...

Statement Interpretation

REC BY K2 FROM 12 00000012

REC BY KEY2 FROM 12 12000000

REC BY SECOND-KEY FROM 12 12000000

The formatting difference occurs if the field name specified is a
redefinition of a key field (See first row of table).

FROM

The FROM modifier is used to specify a lower limit for the active key.

Syntax:

FROM literal ...

Where:

literal Processing is to begin with the first record which has a key
greater than or equal to the value of this literal. Any
numeric or string literal can be used.
Multiple literals may be specified to allow the user to use
complex keys.

Example:

DISP1 BY NAME FROM "JOHN"
DISP2 BY JOB-NO FROM 2000
DISP3 BY CUST-NO FROM "MAP" 3

Additional Considerations:

When specifying a key value with the FROM modifier the key value may
be a partial value rather than a specific value. (i.e., FROM 'JO' instead of
FROM 'JOHN')

When a partial value is specified, it is padded with LOW-VALUES. This
allows a FROM modifier to include all records whose key begins with the
FROM value.

See the BY modifier in this section for an explanation of how complex
keys are handled.

GO

The GO modifier is used in conjunction with the CHANGE or UPDATE
command to allow batch processing of multiple records without user
confirmation of each change.

TIP Query Language

84 Draft 2.5 - Confidential IP-627

Syntax:

GO

Additional Considerations:

If any data in the record fails to pass any programmed VERIFY clauses,
the record will be displayed for operator correction before allowing the
update to continue.

The TQL program must specifically allow the use of the GO modifier since
it can be dangerous if not used carefully.

IF

The IF modifier allows the user to conditionally include records in the
processing of a TQL command.

Syntax:

IF expression

Where:

expression
Any valid TQL expression. The expression may include
arithmetic, relational and Boolean operators.

Example:

SUM INV-QTY IF LOCATION = "WAREHOUSE"
COUNT ORD-HDR IF COUNTRY = "GERMANY" AND
ORD-TOTAL < ORD-ESTIMATE / 2

Additional Considerations:

The IF modifier is used to restrict processing of any driving record reads
(READ statements without FROM or VIA clauses).

The supplied expression is evaluated after any READ declaratives are
executed. This allows the expression to accurately use fields in the
driving record and any records read in the declarative using the VIA
clause.

To apply a condition to any child or detail records, read using a FROM
clause, use the WHERE modifier described in this section.

INTO

The INTO modifier allows a user to specify a pathname for a UNIX file
which is to receive the output of a command.

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 85

Syntax:

INTO path

Where:

path Any valid UNIX pathname (relative or absolute).
The pathname may have quotes around it but they are not
required.

Example:

EXPORT CR-NAME CR-PHONE CR-ORD-DATE INTO
/export/tql/call_list
EXPORT XR-COMPANY XR-CONTACT INTO
"../john/contacts.txt"

Additional Considerations:

Typically TQL strings are forced to UPPER case unless the literal notation
(l"text") is used. This is not necessary for the INTO modifier. Whether
the path is specified with the literal notation or just quoted (or not quoted
at all) the text is never modified.

key-value

The key-value modifier is used to specify a key value for a specific record
to process.

Syntax:

literal ...

Where:

literal
The command is to process the record which has a key
equal to the value of this literal. Any numeric or string literal
can be used.
Multiple literals may be specified to allow the user to use
complex keys.

Example:

DELETE CUST-REC "ALP00000"
UPDATE "Q" 1994 "Y" 0

Additional Considerations:

See the BY modifier in this section for an explanation of how complex
keys are handled.

TIP Query Language

86 Draft 2.5 - Confidential IP-627

MOVE

The MOVE modifier is used to copy the value of an expression into one or
more destination fields.

Syntax:

MOVE expr TO field ...

Where:

expr An expression to use as the source for the move operation.
The expression may be a simple field or literal or may be a
more complex TQL expression.

field The name of a field to use as the destination for the move
operation.
Multiple destination fields may be specified and all will
receive the source value.

A MOVE modifier may appear before or after a command that is to be
executed. If the MOVE modifier appears before the command it is
executed once, before the TQL command is executed. If the MOVE
modifier appears after the command it is executed every time a record is
read.

Several MOVE modifiers may be entered. The MOVE modifier is useful in
combination with the GO modifier to make bulk changes to a file.

The MOVE modifiers that are executed before the command are ideal for
passing last minute information to the TQL program (usually by moving a
value to a working storage field). For example, a report could examine a
field in WORKING-STORAGE to determine the desired number of lines
on a page or the number of columns of labels that are to be generated.

Example:

MOVE 'LA' TO WS-DEPOT PRINT REPORT3 FROM
'BOLTS' TO 'NUTS'
MOVE TAX * 1.08 TO TAX

In this example, the statement MOVE 'LA' TO WS-DEPOT is executed
once only (before the PRINT command begins execution).

In this case, it is presumed that some code in the TQL program (an ON
READ clause perhaps or an IF statement within REPORT3) examines the
value in the field WS-DEPOT to select records or other information.

The statement MOVE TAX * 1.08 TO TAX is executed for every primary
record that is read. Again, the presumption is that some sort of 8% surtax
is being applied to value being reported from the field TAX.

Additional Considerations:

MOVE modifiers that appear after the TQL command are executed
immediately after any DECLARATIVE (ON READ) processing.

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 87

ON

The ON modifier allows the user to select an output printer destination for
a TQL command.

Syntax:

ON printer [NO HEADING | WITH HEADING]

Where:

printer
Any valid TIPPRINT destination.

The WITH HEADING or NO HEADING clauses allow the user to control
whether or not the AD HOC heading page is generated.

Example:

INV-LIST ON AUX1
EXPORT NAME ADDR IF NAME BEGINS WITH "DR."
ON PRNTR NO HEADING
PRINT CUST-RPT ON HP-PRNTR

SORT

The SORT modifier allows the user to process selected records in
ascending or descending order using one or more fields as a sort key
specification.

Syntax:

SORT [default-order] [name]
BY field[:order] ... field[:order]

Where:

default-order
Specifies the default sort order.

The following values are valid for this parameter:

ASC or ASCENDING
Indicates that the default sort order is ascending.
This is the default.

DESC or DESCENDING
Indicates that the default sort order is descending.

name A record, display or report name.
If a display or report is specified then the driving record is
the one sorted.
If this parameter is omitted the first display in the TQL
program is used to determine which record is sorted.

TIP Query Language

88 Draft 2.5 - Confidential IP-627

field Indicates the field or fields which are compared for the
purposes of sorting. The order that the field names are
specified in is significant. The fields are assumed to be
specified in major to minor order. That is, the first field is
the primary sort, the next field is secondary within the
primary field, etc.

order Specifies ascending or descending order for the
accompanying field.

If order is not specified the default sort order (ascending) is
used.

The following values may be used for this parameter.

A or ASC or ASCENDING
Indicates that the default sort order is ascending.

D or DESC or DESCENDING
Indicates that the sort is to be in descending order.

Example:

PRINT STATE COMPANY TELEPHONE SORT BY
STATE:D COMPANY TELEPHONE:D

This command would sequence the currently selected records (selecting
all records, if necessary) in descending order by the field STATE. Then,
for each unique STATE, the companies would be put in ascending order
(COMPANY within STATE) and finally, TELEPHONE numbers would be
sorted in descending order for each COMPANY (TELEPHONE within
COMPANY within STATE). The resulting sorted selection of records
would be used to produce the output for the PRINT command.

Additional Considerations:

The SORT modifier may be used as a command on its own (See SORT
Records).

The real data file or files involved are not actually sorted. Instead, the high
level index for the active selection (See SELECT Subset Of A File) is
reordered according to the SORT specifications.

If a selection is not active a selection of all records will be made in order
to perform the sort.

The SORT compares fields in two records by doing a hardware character
comparison that is not sensitive to the internal representation of the field.
This implies that sorting based on fields which are binary or packed fields
may lead to results which appear to be incorrect because the user may
be unaware of subtle differences in internal representation (the sign of
numeric fields or the byte order of binary fields, for example).

Also keep in mind that character fields which contain upper and lower
case information are affected by the fact that UPPER case letters appear
before LOWER case letters in the defined collating sequence (and TQL

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 89

does NOT treat upper and lower case letters as equivalent for sorting
purposes).

SUM

The SUM modifier is used to count and sum a field or fields to be printed
after a command has completed execution.

Example:

LIST CM-COMPANY FROM "A" TO "J"
 CM-NO-TERMINALS SUM CM-NO-TERMINALS

After the PRINT command has completed the following is also output.

Additional Considerations:

The SUM modifier may be used as a command on its own (See SUM
Fields).

At the end of the display (or upon returning prematurely to the TQL
command screen), the number of items counted will be displayed. For
each field, the total, average (mean), standard deviation, maximum and
minimum will be shown.

The final column (Minimum) appears only on printed reports since it is
beyond the right most edge of the screen.

Only numeric fields may be specified with the SUM modifier.

The Deviation is the standard deviation of the data (population n-1). This
value is computed according to the formula:

SQRT (((sum of all X*X) - (n * AVG * AVG
)) / n -1)

Where n is the number of items, X is an individual item and AVE is the
mean of all X's.

TO

The TO modifier is used to specify an upper limit for the active key.

Syntax:

TO literal ...

Where:

literal Processing is to stop with the last record which has a key
less than or equal to the value of this literal. Any numeric
or string literal can be used.

TIP Query Language

90 Draft 2.5 - Confidential IP-627

Multiple literals may be specified to allow the user to use
complex keys.

Example:

DISP1 BY NAME TO "GEORGE"
DISP2 BY JOB-NO FROM 1000 TO 2000
DISP3 BY CUST-NO FROM "M" 3 TO "M" 7

Additional Considerations:

When specifying a key value with the TO modifier the key value may be a
partial value rather than a specific value. (i.e., TO 'JO' instead of TO
'JOHN')

When a partial value is specified, it is padded with HIGH-VALUES. This
allows a TO modifier to include all records whose key begins with the TO
value.

See the BY modifier in this section for an explanation of how complex
keys are handled.

WHERE

The WHERE modifier allows the user to conditionally include records in
the processing of a TQL command.

Syntax:

WHERE expression

Where:

expression
Any valid TQL expression. The expression may include
arithmetic, relational and Boolean operators.

Example:

Given the following display, a runtime WHERE clause may be specified to
select which transactions (TRANSACTION-REC) are to be included in the
display.

REC: READ CUSTOMER-REC
PERFORM DISP-CUST-FLDS
DO 10 {
READ TRANSACTION-REC FROM CUST-NO
PERFORM DISP-TRANS-FLDS
} USING FORMAT1.

If the desired records were all customers (CUSTOMER-REC) with a
CUSTOMER-NAME field containing 'DR' and all corresponding
transactions (TRANSACTION-REC) with a TRANS-DATE field greater
than 870601 then the following command would be desirable.

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 91

►REC IF CUSTOMER-NAME CONTAINS 'DR' WHERE TRANS-DATE > 870601

Additional Considerations:

A common data organization is the presence of a parent record which
contains a pointer to a variable number of child records (that often are
contained in another file). The IF modifier applies only to fields in the
parent record or controlling file read.

If a display or report also reads child or detail records (that is, records
from a supplementary file) using READ FROM, the IF modifier can not be
used to apply selection criteria to those records because the IF
expression is evaluated before the secondary read (READ FROM)
occurs.

The WHERE clause may be used to apply criteria to child record fields as
it is evaluated after each READ FROM is executed.

The supplied expression is evaluated after any READ declaratives are
executed. This allows the expression to accurately use fields in the child
record and any records read in the declarative using the VIA clause.

To apply a condition to a driving record read (i.e., a READ without a
FROM or VIA clause) use the IF modifier described in this section.

ADHOC Commands

This section of the manual provides a reference for the TQL AD HOC
commands. These commands when entered on the TQL prompt screen
allow the user to execute predefined displays, print predefined reports
and otherwise display and manipulate data at runtime.

When executing a command from the TQL prompt screen TQLRUN
parses the supplied command in this order:

attempt to match an AD HOC command

attempt to match a display or report name
 (See Using a Predefined Display and PRINT Predefined Report)

attempt to match a saved command name
 (See EXECUTE A Saved Command)

assume the default display or report is to be executed and try matching
the command text against the acceptable AD HOC modifiers (the last
resort being to use the text as a key-value)

Using a Predefined Display

The TQL user may request that data be displayed according to a
predefined display format. Each predefined display format has a name

TIP Query Language

92 Draft 2.5 - Confidential IP-627

which was assigned by the programmer. The display format describes
which fields will be displayed and the visual format of the display.

To request a particular display, the user enters a command in the
following format:

Syntax:

[display] [ad hoc modifier ...]

Where:

display
The name of the desired predefined display. A list of
available display names that have been preprogrammed is
displayed at the top of the TQL prompt screen.

If a name is not provided the first predefined display is
executed. If no predefined displays exist then the first
predefined report is executed (See PRINT Predefined
Report).

ad hoc modifier
Allowed AD HOC modifiers are:

BY
FROM
IF
key-value
MOVE
SORT
SUM
TO
WHERE

Example:

This example requests the predefined display named DISP1. Records are
displayed if the field INVOICE-TOTAL has a value greater than 5,000.

►DISP1 IF INVOICE-TOTAL > 5000 SUM INVOICE-AMT UNIT-PRICE

After displaying all data screens, the total, average, standard deviation,
maximum and minimum values of both INVOICE-AMT and UNIT-PRICE
are displayed. The count of the number of items used to compute the
average is also shown.

Additional Considerations:

While a display is executing several function keys are available to the
user (See Function Keys).

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 93

ADD Record

The ADD command allows the user to add a new record (assuming that
this capability is permitted by the TQL program). TQL will display a
selected screen format with unprotected fields to allow the user to enter
data.

Syntax:

ADD [display] [ad hoc modifier]

Where:

display
The name of a predefined display in the TQL program
which will indicate the fields and screen format to display to
the user. If this name is omitted, TQL will default to the first
display defined in the program.

ad hoc modifier
The only supported AD HOC modifier for the ADD
command is:

key-value

Additional Considerations:

The screen is displayed with no initial data (unless the user supplies a
key-value). The user must enter the appropriate data and press the
TRANSMIT key. When TQL receives the data it verifies it according to
any VERIFY clauses, checks for the existence of any MUST ADD fields
and executes any ON ADD or ON WRITE declaratives. If errors are
detected the terminal operator is notified. The terminal operator should
correct the data in error and press the TRANSMIT key again.

CHANGE Data

The CHANGE command is equivalent to the UPDATE command; it is
used to update data in a file (provided that the TQL program allows that
operation). See description of the UPDATE command in a separate
section.

CLOSE TQL Program

The CLOSE command terminates the TQL program. It is equivalent to the
END command.

Syntax:

CLOSE

TIP Query Language

94 Draft 2.5 - Confidential IP-627

COUNT Records

The COUNT command counts records in the file.

Syntax:

COUNT [name] [ad hoc modifier ...]

Where:

name May either be a record name or a display name.
Default: the first display defined in the program will be
used.

ad hoc modifier
Allowed AD HOC modifiers are:

BY
FROM
IF
SORT
SUM
TO
WHERE

Example:

COUNT IF TIMES-RUN > 5
 SUM BASIC-CHRG TOTAL-CHRG

DELETE Record

The DELETE command allows the user to delete a record from a file.

Syntax:

DELETE [display] key-value

Where:

display
The display format to use to display the record.

Default: the first display defined in the TQL program.

key-value
The specific key of the record to be deleted. This value is
required and must constitute a complete (not partial) key
value.

Example:

DELETE 'AEI00020'

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 95

Additional considerations:

The DELETE command will display a selected record and prompt the
user for confirmation of the delete request - the informational message
Press xxx to delete record (where xxx will be replaced with the currently
defined ACK key, See the Function Keys section of this manual) will
appear on the screen. The terminal operator should verify that the
displayed record is indeed the record to be deleted.

To delete the displayed record press the ACK key. If any other key is
pressed, TQL will not delete the displayed record and return the user to
the TQL command screen.

Records cannot be deleted unless the TQL program has explicitly allowed
deletes to be performed.

If the exact key of the record to be deleted is not known, the terminal
operator can use the normal facilities of TQL to display records (example:
display-name FROM ...). Once the correct record is displayed, pressing
the DELETE key (See Function Keys) will request deletion of the current
record. You will then be prompted for confirmation as if you had entered
the appropriate DELETE command.

DROP Selection

The DROP command allows the user to deactivate a selection. (See the
SELECT command for a description of a selection). The selection is still
available for future reselection. To permanently remove a selection, use
the RELEASE command.

Syntax:

DROP [sel-item]
DROP ALL
DROP TO sel-item

Where:

sel-item
Can be either a selection name or a selection number.
If you specify sel-item, the selection is dropped but the
current selection will not change unless sel-item is the
current selection.

ALL Drops all selections, leaving no current selection.

TO sel-item
Drops all selections from the current selection up to, but
not including, the selection specified by sel-item. Sel-item
becomes the current selection.

TIP Query Language

96 Draft 2.5 - Confidential IP-627

Additional Considerations:

TQL displays the error message No Selection open! if you attempt to
issue a DROP command without having a selection active.

Selections may be listed using the SHOW command (later in this section).

END TQL Program

The END command terminates the TQL program. This command is
equivalent to the CLOSE command.

Syntax:

END

Additional Considerations:

The END command must be spelled as shown, without abbreviation.
Using the CANCEL function key when the TQL prompt screen is
displayed is equivalent to an END or CLOSE command.

ENTER Several Records

The ENTER command is equivalent to multiple uses of the ADD
command. TQL will repeatedly display the specified display so that the
terminal operator may enter new records to the file.

Syntax:

ENTER [display]

Where:

display
The name of the desired display to use to enter records.

Default: first display named in TQL program.

Additional Considerations:

The screen is displayed with no initial data. You must enter the data and
press TRANSMIT.

To terminate the ENTER command, the terminal operator must press
CANCEL. This causes TQL to return to the TQL command screen. The
message "Record not added" signals that the ENTER operation has been
completed (the last screen, at the time of CANCEL, was NOT added to
the file).

When TQL receives the data it will verify it according to any VERIFY
clauses, check for the existence of any MUST ADD fields and execute
any ON ADD or ON WRITE declaratives. If errors are detected, the

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 97

terminal operator will be notified. The terminal operator should correct the
data in error and again press TRANSMIT to attempt to add data.

If the display being used for the ENTER command has an ON ENTER
clause the ON ENTER display will be executed after pressing TRANSMIT
on the initial display. The new display will repeatedly be presented to
allow the user to add child or detail records. When the user presses the
CANCEL key the original display will again be presented to allow the
opportunity to enter more records.

EXECUTE A Saved Command

The EXECUTE command allows you to recall a previously saved
command and immediately execute that command with no further
modification. (See RECALL a Command and SAVE a Command)

Syntax:

[EXECUTE] name [parameters]
EXECUTE

Where:

name The name of a saved command.
If this parameter is not provided (and EXECUTE is
specified), TQL presents a menu of previously saved
commands for you selection.

Additional Considerations:

The word EXECUTE is optional (unless you wish to view a menu of
potential commands) because TQL attempts to match a name (in this
order of precedence) to:

 a display name
 a report name
 a saved command for this program
Otherwise, the characters are interpreted as a key-value.

EXPORT Data

The EXPORT command is used to write data:

ON any valid TIPPRINT destination

INTO a UNIX text file

Syntax:

EXPORT [format] [(] export-item ... [)]
[ad hoc modifier ...]

TIP Query Language

98 Draft 2.5 - Confidential IP-627

Where:

format
One of the following format specifiers.
Default: LOTUS 1-2-3 format (See Additional
Considerations below).

ASIS Indicates that no delimiter character is wanted.
'?' Indicates that the data is to be output using the

specified character as the field separator.
A string of up to eight characters may be specified
within quotes.
The character string will be appended to each field
that is output.

MAPPER
Indicates that the data is to be output in a format
acceptable by computer MAPPER (a tab character
X'05' is used as a field separator.

OFIS or SPLINK
Indicates that the data is to be output in a format
acceptable by OFIS (one field per line)

TRIM Indicates that trailing spaces are to be removed
form PIC X fields.

export-item One or more items to be exported (may optionally
be enclosed in parentheses) separated by either commas
or spaces.
The export items may simply be field names but more
complex TQL expressions are allowed.

ad hoc modifier
The AD HOC modifiers which are allowed are:

BY
FROM
IF
INTO
ON
SORT
SUM
TO
WHERE

The INTO and ON modifiers are mutually exclusive. If neither is
supplied then the default destination for the EXPORT
command is the TIPPRINT destination AUX0.

Example:

EXPORT CUST-NAME CUST-DATE CUST-DUE CUST-BAL * 1.08
IF CUST-COUNTRY = "CANADA" INTO "/test/export.data"

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 99

Additional Considerations:

The first non-WORKING-STORAGE field is used to determine the record
for the driving READ.

The specified fields are extracted from the records based on any IF,
FROM or TO modifiers that are present. Each set of selected fields
becomes a line in the output print file or a record in the output file.

The default export format is LOTUS 1-2-3 format and follows these rules:

Alphanumeric fields are output enclosed in single quotes.

Numeric fields are output with zero suppression and a decimal point (if
appropriate).

Three spaces are output between fields.

The maximum line length for export is 2560 characters.

Free Format LIST

The LIST command may be used to list a specific set of fields (or
calculated values) from records which are selected based on any
AD HOC modifiers. Data is displayed for each item specified. The
information is displayed in groups of four lines on the screen. Only the
specified items will be displayed, nothing is displayed automatically.

Syntax:

LIST [attrib] [(] list-item ... [)] [ad hoc modifiers]

Where:

attrib
can be one or more of the following:

WIDTH = <number>
Number of characters per line to a maximum of
250.
Default: 80

LENGTH = <number>
Number of lines per page.

SPACING = <number>
Number of blank lines to insert between each data
record.
Default: 0

WITH [NO] WRAP
Controls wrapping of the output data based on the
line length.
Default: Wrapping enabled.

list-item
One or more items to be listed (may be enclosed in

TIP Query Language

100 Draft 2.5 - Confidential IP-627

parentheses) separated by either a comma or space.
The list items may simply be field names but more complex
TQL expressions are valid.

ad hoc modifiers
The allowed AD HOC modifiers are:

BY
FROM
IF
ON
SORT
SUM
TO
WHERE

If the ON clause is not specified then the default TIPPRINT
destination is AUX0.

Example:

LIST CUST-NAME CUST-DATE CUST-DUE

Additional Considerations:

The first non-WORKING-STORAGE field is used to determine the record
for the driving READ.

Each screen of listed data contains a command area at the top of the
screen to ask whether to continue or not.

Display MORE Data

The MORE command causes the TQL program to proceed to the MORE$
label in the current display. If the label MORE$ is not encountered in the
predefined display an error message will be displayed.

The MORE$ label is usually used to specify the portion of a display that
represents child information when records are organized in a parent-child
relationship.

Syntax:

MORE

Additional Considerations:

The MORE function key (See Function Keys) may also be used while a
display is being executed to show more child or detail items.

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 101

MOVE Field or Value

The MOVE command is documented in the AD HOC modifiers section of
the manual.

Display NEXT Screen of Data

The NEXT command continues displaying records from the last record
displayed.

If the MORE key has been used to present subsequent screens of child
record data and the PREV key has been used to move backwards in the
display of child records then NEXT will move forwards through the display
of child records. When the last generated screen of child records is being
displayed NEXT will move to the next parent record. NEXT will only move
forward through child records for previously displayed child records.
MORE must be used to walk through the complete set of child records.

Syntax:

NEXT

Additional Considerations:

While a display is executing the NEXT key (See Function Keys) is
equivalent to the NEXT command.

OPEN New Program

The OPEN command will terminate the current TQL program and execute
the TQL program specified as a parameter to the OPEN command.

Syntax:

OPEN[,d] program-name

Where:

d This option gives you the ability to create a debug log.
This log will be stored in /tmp/tqlrun.dbug.

program-name
The name of the (new) TQL program to execute.

Display PREV Screen of Data

The PREV command returns the display to the previous record displayed.

If the MORE key has been used to present subsequent screens of child
record data then PREV will move backwards through the display of child

TIP Query Language

102 Draft 2.5 - Confidential IP-627

records. When the first screen of child records is being displayed PREV
will move to the previous parent record.

Syntax:

PREV

Additional Considerations:

While a display is executing the PREV key (See Function Keys) is
equivalent to the PREV command.

PRINT Predefined Report

The PRINT command produces a report that has been predefined in the
TQL program.

Syntax:

[PRINT] report-name [ad hoc modifier ...]

report-name
The name of a predefined report in the TQL program.
A list of available reports is displayed on the TQL prompt
screen.

ad hoc modifier
The allowed AD HOC modifiers are:

BY
FROM
IF
MOVE
ON
SORT
SUM
TO
WHERE

If no ON modifier is specified then the default TIPPRINT
destination is the printer specified in the definition of the
report.

Example:

PRINT RPT1 IF COMPANY = "JOE'S GARAGE" ON AUX1

Free Format PRINT

The PRINT command may be used to produce an ad hoc report. The
user specifies which fields (or calculated values) are to be printed
(instead of specifying a predefined report name).

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 103

Syntax:

PRINT [attrib][(] print-item ... [)] [ad
hoc modifiers]

Where:

attrib
can be one or more of the following:

WIDTH = <number>
Number of characters per line to a maximum of
250.
Default: 132

LENGTH = <number>
Number of lines per page.

SPACING = <number>
Number of blank lines to insert between each data
record.
Default: 0

WITH [NO] WRAP
Controls wrapping of the output data based on the
line length.
Default: Wrapping enabled.

print-item
One or more items to be printed (may be enclosed in
parentheses) separated by either a comma or space.
The print items may simply be field names but more
complex TQL expressions are valid.

ad hoc modifier
The allowed AD HOC modifiers are:

BY
FROM
IF
ON
SORT
SUM
TO
WHERE

If no ON modifier is specified then the default TIPPRINT
destination is PRNTR.

Example:

PRINT CUST-NAME CUST-DUE CUST-DATE ON AUX0

Additional Considerations:

The first non-WORKING-STORAGE field specified determines the record
for the driving READ.

TIP Query Language

104 Draft 2.5 - Confidential IP-627

RECALL a Command

The RECALL command allows you to recall a command which was
previously saved using the SAVE command (See SAVE a Command).

Syntax:

RECALL [name [parameters]]

Where:

name The name of a saved command.
If omitted, TQL will display a menu of available saved
commands so that the user may make a choice.

parameters
The saved command may have utilized variables that are
intended to be substituted at runtime. If this is the case, the
user can enter variable parameters here (these parameters
are similar to TIP command line parameters).
See the discussion and examples in the section on the
"SAVE" command.

Additional Considerations:

After a successful recall, the command will be displayed in the command
area of the prompt screen. You may modify the command to suit the
needs of the moment and press the TRANSMIT key to enter the
command.

RELEASE a Selection

The RELEASE command allows the user to discard a selection. (See the
SELECT command for a description of a selection). The selection is no
longer available for future re-selection in this session. If the selection was
dropped before being released, the saved selection is removed as well.
To temporarily switch to another selection, use the DROP command.

Syntax:

RELEASE [sel-item]
RELEASE ALL
RELEASE TO sel-item

Where:

sel-item
Can be either a selection name or a selection number.

If you specify sel-item, the selection is released but the
current selection will not change unless sel-item is the
current selection.

ALL Releases all selections, leaving no current selection.

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 105

TO sel-item
Releases all selections from the current selection up to, but
not including, the selection specified by sel-item. Sel-item
becomes the current selection.

Additional Considerations:

TQL displays the error message No Selection open! if you attempt to
issue a RELEASE command without having a selection active.

Selections may be listed using the SHOW command.

SAVE a Command

The SAVE command lets you save a (complex) command which can be
recalled and executed later. After first using a command, to test its
validity, simply insert the word SAVE in front of the command (which TQL
conveniently redisplays on the TQL prompt screen), move the cursor after
the last character to be saved and press TRANSMIT.

Pressing function key 8 at the TQLRUN command line is equivalent to
having issued the SAVE command. In this case, TQL will preserve the
exact layout of the command since the word SAVE does not have to be
removed from the input.

Syntax:

SAVE ...command text...

Where:

...command text...
Any valid TQL command.

In addition to allowing normal TQL commands and
AD HOC modifiers, the command text may include a
special parameter notation that allows the user of the
command to provide variable information when the
command is recalled or executed.

The character string &n (where n is a digit from 0 through
8) is treated as a variable whose value may be provided at
RECALL or EXECUTE time.

If a parameter has a meaningful default value, the default
value may be specified by placing the default value in
parentheses immediately after the parameter; example:
&4(C). The default value will be used if the runtime user
does not specify that parameter.

The special parameter &0 may also be used, meaning the
entire parameter string as entered.

TIP Query Language

106 Draft 2.5 - Confidential IP-627

Example:

Assume the following command was saved under the name TEST.

EXPORT (CUST-NO AMT-OWING CREDIT-LIMIT)
FROM &1 TO &2 IF AMT-OWING > &3 ON &4

There are four variables used in this command that are expected to be
supplied with values at runtime. The user (or a MENU item) could supply
these parameters at runtime by using the following command.

RECALL TEST 100,199,1000,PRNTR

This would result in the display of the command shown below.

EXPORT (CUST-NO AMT-OWING CREDIT-LIMIT)
FROM 100 TO 199 IF AMT-OWING > 1000 ON
PRNTR

Additional Considerations:

After entering a SAVE command the screen format shown below is
displayed with the text of the command to be saved. The user must give a
name to this command to later RECALL or EXECUTE the command.

You may make last minute alterations of the text and then press
TRANSMIT to save the command under the specified name.

If a parameter is defined within the command, but not supplied at runtime,
TQL inserts the string ???? to highlight an entry that the user should fill in
before using the command.

SELECT Subset Of A File

The SELECT command allows the user to select a subset of the records
in a file and to have all subsequent commands operate only on the
records identified by the subset. The selection is normally discarded when
the user ends the TQL program, but the user may name the selection and
therefore be able to retain it for later re-selection.

Syntax:

SELECT [name] ['grp/subset'] [ad hoc
modifier...]
SELECT sel-item
SELECT 'grp/subset' RENAMES sel-item

Where:

name
May be either a record or display or report name.
If a display or report is specified, the first record named in

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 107

the display or report defines the record type to be selected.
If this name is omitted, the first display is used.

'grp/subset'
This is an optional name for the selection.

If omitted the selection will not be saved when the TQL
program ends.

One or two names may be specified; if two names are
specified, they must be separated by a slash.

The name (or names) must be enclosed within quotes.

If only one name is supplied, the group name will default to
the user's private group.

ad hoc modifier
The allowed AD HOC modifiers are:

BY
FROM
IF
SORT
SUM
TO
WHERE

sel-item
Can be either a selection name or a selection number.

RENAMES
Rename a selection and make sel-item the current
selection.

Example:

SELECT 'EDP/BUNCH' IF EMP-DEPT = 'MIS'

This command scans the entire file (since neither a FROM nor a TO
modifier is specified) and selects all records where the field EMP-DEPT
was equal to 'MIS'. The key values for each matching record are stored in
the selection named "EDP/BUNCH". The name implies that the selection
is accessible by those users in the user group EDP.

Additional Considerations:

A SELECT command with no selection criteria selects all records (if no
selection with a matching sel-item is found).

A selection is stored as a high level index containing all key values for a
given record.

When executing reports, displays, etc., performance is often much better
when acting on a selection. This is because the current selection is
maintained in memory allowing or faster access than disk based I/O.

TIP Query Language

108 Draft 2.5 - Confidential IP-627

No copy of the record is made. All subsequent commands will process
the current information contained in the main file (with the exception of a
modified key value).

A SELECT operation may be performed on an existing selection; if the
second selection results in no matching records, the active selection will
contain zero records and the user must issue a DROP command to return
to the previous active selection.

Selections may be listed using the SHOW command (later in this section).

SHOW Field Names and Selects

The SHOW command allows the user to see a list of all field names in a
record, or in a predefined display or report. Alternately the SHOW
command can be used to display all currently loaded selections (See
SELECT Subset Of A File).

Syntax:

SHOW [name]
SHOW SELECT

Where:

name
The name of a record, display or report that this TQL
program uses.

If this parameter is omitted, TQL displays the names of the
files and records that this TQL program references.

If a predefined display or report name is given, TQL
displays all of the field names that are output by that entity,
along with information about the fields.

SELECT
Displays information about selections.
An asterisk (*) marks the current selection. Each selection
has a number that can be used as an identifier for DROP,
RELEASE and SELECT commands.

Example:

SHOW CUST

Additional Considerations:

The information shown for each field is the name of the field, an indication
of the field type and whether or not the field is a member of a key of the
file (as shown in the following sample display).

The possible values for the Type entry are shown in this table.

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 109

Type Description

A/E Alpha Numeric Edited

A/N Alpha-Numeric

ALPH Alphabetic

BIN Binary

BINS Binary Signed

COND Condition Name

FIG Figurative Constant

FP Floating Point

FPS Floating Point Signed

GP Group Item

IDN Index Item

NE Numeric Edited

NEF Numeric Edited Floating Point

NEFS Numeric Edited Floating Point Signed

NES Numeric Edited Signed

NP Numeric Packed

NPS Numeric Packed Signed

NUP Numeric Unpacked

NUPS Numeric Unpacked Signed

The following shows some sample output from the SHOW SELECT
command.

Descriptions of the displayed entries are shown in this table.

Heading Description

A unique numeric identifier for the select within the
session. This number may be used as a reference
to the select where applicable.

Group
Name

The name used to save the select when exiting from
TQLRUN. The select is saved if it has not been
dropped.

If the selection is unnamed it will not be saved

File
Record

The record selected.

Count The number of records in the selection

Status Can be either active or dropped. Active selects have

TIP Query Language

110 Draft 2.5 - Confidential IP-627

an affect on any ad hoc commands.

Drop To When this select is dropped the DROP TO select
will become the active select. It the DROP TO
number is 0 then no select will be active.

Type Can be either NEW or OLD. OLD means that the
select was a saved select and was loaded from
disk. NEW signifies a newly created select.

SORT Records

The SORT command is used to sort a selection of records by a field or
fields in a chosen order.

See the SORT modifier for a description of the syntax and use of this
command.

Example:

SORT CUST-REC BY CM-MACHINE CM-MEMORY:D CM-NO-TERM:D

This command would sort the current selection for the record CUST-REC
in ascending order by computer type (CM-MACHINE). Each record with
the same computer type would then be in descending order by the
amount of memory in the computer (CM-MEMORY). Finally, all machines
of the same type and with the same amount of memory, would be in
descending order by the number of terminals connected to the computer
(CM-NO-TERM).

Additional Considerations:

Use the SORT command rather than the SORT modifier when all you
wish to do is sort a selection so that it can be saved in a new order for
later use.

SUM Fields

The SUM command allows the user to count records and total fields from
within the records.

See the AD HOC modifier SUM for an explanation of syntax and use of
the SUM command.

Example:

SUM CM-NO-TERM IF COUNTRY = "CANADA"

Additional Considerations:

Use the SUM command rather than the AD HOC modifier when all you
wish to do is count records and sum fields within those records without
executing some other command.

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 111

UPDATE Record

The UPDATE (or alternately CHANGE) command allows the user to
update one or more records. The current information is displayed on the
screen, the user is then able to make necessary changes and press the
TRANSMIT key.

Syntax:

UPDATE [display-name] [ad hoc modifier ...]

Where:

display-name
Specifies a display to use to update a record or a range of
records.

ad hoc modifier
The allowed AD HOC modifiers are:

BY
FROM
GO
IF
KEY
MOVE
TO
WHERE

Examples:

Display any records where the AMOUNT-DUE field is greater than 5,000.

UPDATE CUST IF AMOUNT-DUE > 5000

The user may make any desired changes to each in turn and press
TRANSMIT. Alternately the user can use the CANCEL key to abort the
UPDATE, the NEXT key to skip to the next record or the PREV key to
return to the previous record.

Display only the specified record, if it is found, which the user then may
modify in the same manner as the previous example.

UPDATE CUST 'AEI00020'

The final example uses the AD HOC modifier GO to apply MOVE to all
records that are selected (no user intervention is required). However, you
must have an ALLOW GO statement in your program. See ALLOW: GO
(Auto Update).

ALLOW GO
...
UPDATE CUST MOVE 0 TO AMOUNT-DUE GO

TIP Query Language

112 Draft 2.5 - Confidential IP-627

Additional Considerations:

Pressing the UPDATE key whenever TQL is used to display a record
(using a predefined display) causes TQL to redisplay the same record for
update. If you decide not to proceed with the update press CANCEL to
cancel the update.

Direct Execution of TQL Programs

Normally you would run a TQL program, "progname", by entering one of
the following from the TIP command prompt:

"OPEN progname" or "TQL progname".

To make it possible to invoke a TQL program as a transaction (without
prefixing it with OPEN), you must use smsec to add a program security
record for the TQL program.

You can execute smsec directly or start tcm then select "System
Security".

The transaction id must be the same as the PROGRAM-ID in the TQL
program. In the Program Security Information screen fill in "TIP$SYS
PROGRAM NAME" with "OPEN".

Once the TQL program has been defined as a TIP transaction, users can
invoke it from the TIP command line with "progname".

Calling TQL From a TIP Program
To invoke a TQL program, a transaction program must do the following:

set CDA-PARAM(1) to the name of the TQL program,

set PIB-TRID to one of the TQL transaction codes (TQL, TQLRUN, or
OPEN), then

call TIPSUB or TIPXCTL.

An application program can call TQL and pass a TQL command in the
CDA. The structure of the CDA is described by the copy element TIP/TC-
CDA.

If the CDA area contains unrelated data after the TQL command, you
must restrict the size of the CDA passed to TQL. This is done by moving
the desired CDA length to be passed into PIB-CDA-LENGTH. This is the
sum of the length of the command and the length (72) of the fields that
precede CDA-TEXT.

cda length = 72 + command length

For example, if the TQL command is 280 characters long, set PIB-CDA-
LENGTH to 352 (which is 280 plus 72)

TQLRUN - TQL Runtime Interpreter

9-Jan-2004 Draft 2.5 - Confidential 113

This differs from how TQL for TIP/30 handles calling from an application
program. The command area passed to TQL on TIP/30 had to be exactly
238 bytes.

TQL does not pass back the contents of its CDA so the application's CDA
will remain as it was before the TIPSUB to TQL.

TQL does not impose any restriction on the size of the command passed
in via the CDA.

You may invoke a TQL program as a transaction by adding a program
record to the TIP catalogue that defines the TQL program-id as a TIP
transaction by cloning the supplied transaction named "OPEN".

Use the TIP Catalog Manager (TCM) to add the program record to the
catalog. The transaction id must be the same as the PROGRAM-ID in the
TQL program.

CDA Field Description

CDA-
PARAM(1)

The name of the TQL program to execute.

CDA-TEXT An (optional) initial TQL command or commands
separated by a backslash character (\).

The CDA-TEXT field is defined as 80 bytes in the
copy element TIP/TC-CDA.

The program should define the CDA-TEXT field
to ensure that the CDA is correctly formatted for
TQL (See example which follows).

Example:

01 CDA. COPY TC-CDA OF TIP.
05 TQL-CDA-TEXT PIC X(80).
05 TQL-CDA-TEXT-2 PIC X(80).
05 TQL-CDA-TEXT-3 PIC X(80).

...
MOVE 'TQL' TO PIB-TRID.
MOVE SPACES TO CDA.
MOVE 'ARINQ' TO CDA-PARAM(1).

*
** Store CDA length to be passed (CDA header information)
** plus our extra data. 152 + 160 = 312
*

MOVE 312 TO PIB-CDA-LENGTH
MOVE 'SELECT IF STATUS = 1 \' TO TQL-CDA-TEXT.
MOVE 'SORT DESCENDING BY CUR-BALANCE \'

TO TQL-CDA- TEXT-2.
MOVE 'REPT1 ON AUX1' TO TQL-CDA-TEXT-3.
CALL 'TIPSUB'.
IF NOT PIB-GOOD

GO TO ERROR-CALLING-TQL.

TIP Query Language

114 Draft 2.5 - Confidential IP-627

This example appends two extra fields of 80 bytes to the predefined CDA-
TEXT field and then builds a multi-line command in the 238 byte area and
performs the TQL transaction.

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 115

TQLMON - TQL Development Environment

TQLMON Features
TQLMON is the environment used to develop TQL applications that are
executed by the TQL Runtime Interpreter TQLRUN. TQLMON provides a
set of commands for manipulating file, record and program definitions.

Commands may be entered at the command line providing any desired
parameters; TQLMON will prompt for any missing information. In addition,
the menu may be used to select the required function and to fill in the
required information. To access the menu use the TIP 'Activate Menu Bar'
key sequence as defined in the Terminal Interface section of the TIP
Utilities Manual .

Access to TQLMON is required only by the TQL developers. The end
user is not expected to run TQLMON at any time.

TQLMON maintains control over the elements entered into the system
and it is important that the TQL system is not manipulated outside of the
TQLMON environment. If the system appears to be inconsistent, see the
TQLADMIN section for further assistance.

TQL Development Cycle

This section describes the recommended development cycle while in
TQLMON.

Step 1. Define the file to TQL.

Since TQL uses FCS to access the file it must be defined to TIP. The
usual process is to define the file to TIP using the SMFILE utility and then
use the AF command in TQLMON to define it to TQL.

The commands used for FILE definition are CF, NF, SMFILE and UF,
which are described later in this manual.

Step 2. Define the record definitions to describe the file contents.

It is recommended that records are defined outside of the program that
will use the file. This allows for updating a record definition and having
each program that uses that record automatically use the updated record
when the program is compiled. The record definitions are precompiled
which provides for faster compilation of programs.

The commands used for in RECORD definition are C, N, NT, U, UT, W
and WT which are described later in this manual.

TIP Query Language

116 Draft 2.5 - Confidential IP-627

Step 3. Define the program to manipulate data files.

When a program is compiled it reads in any precompiled records as
specified. The commands involved in PROGRAM definition are CP, CPT,
NP, NPT, UP, UPT, WP and WPT, which are described later in this
manual.

Step 4. Execute the program.

The program may be executed using the RUN or OPEN command while
in TQLMON, by using OPEN, TQL or TQLRUN at the TIP command line
or via a transfer of control from a TIP transaction to OPEN, TQL or
TQLRUN.

Editing

TQLMON invokes the editor defined by the catalogue entry for TQLEDT
when source code editing is required. This defaults to FSE which is the
most suitable editor for dealing with COBOL-style source modules. TQL
maintains the source and provides a copy for editing. Changes are posted
back to the system only on successful compilation. If you wish to abort
your edit session but keep the changes made to date then either write the
source to a location of your choice, or when in FSE, us the "E" command
to save the source in an edit buffer. The next time you edit the file using
FSE you will get this version back.

This saving of source will only work when the editor is FSE. Other editors
such as "vi" do not know about TIP edit buffers and you will manually
have to read in the saved source.

Currently, the only other supported editor for TQL is "vi". To use vi as your
editor update the TQLEDT program record to point to the vi executable. If
you would like support for any other editor then submit an RFC (Request
For Change) to the support department for review.

Compiling

To compile the source module that you are editing you must write out a
copy of the source. In FSE the best command for this is the "WZ"
command (write and quit). There is no need to specify an output file as
you will be editing the file that TQL will be looking for. Remember that this
is a copy of the original source so you can not destroy the original if you
have made any mistakes.

If you are going through a repeated edit-compile cycle then the FSE
command ‘WE’ is the best command to write and exit the editor. This
command writes the current source module and then saves a copy in an

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 117

edit buffer. For larger TQL source modules (i.e. greater than 150 lines)
FSE will load an edit buffer faster than a UNIX text file and on a large
source module this will allow you to start editing sooner. This is only
applicable if you are using FSE as your editor.

TQLMON remembers the modification time of the file before you edit the
file. If the modification time has changed then the module will be
compiled. If you quit from the editor without saving the changes the
module will not be compiled and your changes will not be posted back
into the system.

This method of invoking the compiler differs from the one used by TQL for
TIP/30. Compilation was invoked by exiting from FSE and leaving an edit
buffer behind (done via the E command or by hitting MsgWait). This
method can not be used with TQL because an editor other that FSE might
be used. The only method that can be employed is checking the
modification time of the source file.

Templates and Program/Record Cloning

When creating a new record or program TQLMON provides a default
template as the basis for the new item. Each site may customize the
default template to its own preference. The default templates are
appropriately named "DEFAULT".

The commands used for template manipulation are CPT, CT, NPT, NT,
UPT, UT, WPT and WT, which are described later in this manual.

New records or programs can also be created based on an existing entity;
however, templates provide some features over cloning an existing entry.
When using an existing entity as the base, no special processing occurs
and it is up to the programmer to change any required names such as the
program identifier in the source module.

When a program or record is based on a template the template source is
preprocessed to look for special text substitution markers. These are
identifiers that begin with a dollar sign ($). Currently there are three
markers reserved by TQL. These are $PROGRAM, $FILE and
$RECORD. TQL will substitute text for these markers as required. If no
substitution is appropriate or it is not a reserved marker a prompt for
substitution text will be presented and the programmer can specify the
text to use.

The default templates are required for the system to function correctly
and therefore may not be deleted using the DPT or DT commands.

The TQL for TIP/30 method of file, record and program cloning is still
supported; however, it is recommended that the template method be used
where ever possible. If no template exists then is better to use the new
style commands for creating new items. As an example, given a program

TIP Query Language

118 Draft 2.5 - Confidential IP-627

called TQLTSP, to create a new program based on TQLTSP use the
command “NP NEWTSP TQLTSP” instead of “UP TQLTSP” and
changing the PROGRAM-ID clause. This is a better method because it
doesn't prevent someone from updating TQLTSP and it tells TQL that you
have intentions of creating a program called NEWTSP. This prevents
anyone else from creating a NEWTSP program at the same time you are.

Concurrency Control
TQLMON keeps track of what modules are currently being modified. You
will not be allowed to modify an entity that some one else is actively
working on. You will have to defer your change until the other user is
finished and has released the edit lock. The edit lock is applied and
released by TQLMON only and requires no interaction with the user. The
lock exists while a module is involved in an edit-compile cycle.

If for any reason TQLMON is unable to release the edit lock an invalid
edit lock will remain. No one will be able to change the module even
though no one is actively modifying the module. This situation may arise if
the TQLMON process is terminated while the edit-compile cycle is in
progress. The TQLADMIN utility has an unlock function for clearing this
invalid edit lock. See the TQLADMIN section for details on removing
invalid locks.

This section provides a summary of all the commands available in
TQLMON. Each command is described in greater detail in the following
section.

TQLMON Command line Options

TQLMON supports a few command line options that control compile
behavior. For example, when an error occurs during the compile of a
record or program, the editor is invoked to display the error and provide
an opportunity to fix the error. There are situations where the person
doing the compile may not want to or know how to fix the problem.

The following table outlines the options and the effect produced.

Option Description

B When this option is specified, TQL will not invoke the
editor when a compile error has occurred.
This option is useful for recompiling the system without
worrying about possible compiler errors. It is also a
useful option when doing a large number of imports

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 119

using CR and or CP commands.

K This option prevents TQLMON from erasing the current
contents of the log file

L This option produces a log file containing the errors
from any failed compiles. This is usually used in
conjunction with the B option.
The log file created is $HOME/log.COMP

O This option causes TQLMON to automatically overwrite
entries that already exist in the TQL system. Without
this option the system will ask for confirmation to
replace the existing entry.
This option is generally used when importing a large
number of items that may or may not already exist. The
script that loads the Inglenet supplied TQL items
($TIPROOT/src/tql/LOADTQL) uses this option to
automatically update the existing entries with a new
release.

Command Summary

Command Description

AF Define a file to the TQL system using information in
the TIP catalogue if available.

AS Add a DMS schema definition to TQL.

C Compile a record definition from a UNIX file.

CD Changes current working directory.

CF Compile a file definition from a UNIX file.

COMP Recompile records and/or programs in the TQL
system without editing.

CP Compile a program definition from a UNIX file.

CPT Import a program template from a UNIX file.

CT Import a record template from a UNIX file.

DEL Delete files and/or record definition.

DP Delete program definition.

DPT Delete program template.

DS Delete a schema definition.

DT Delete record template.

TIP Query Language

120 Draft 2.5 - Confidential IP-627

E End TQL monitor.

EDIT Invokes TQLEDT on the specified file.

H Display TQLMON command help information.

L List file and/or record compilation listing.

LP List program compilation listing.

LPT List program template source.

LT List record template source.

M Generate screen format(s) for a program.

N Create a new record definition.

NF Create a new file definition.

NP Create a new program definition.

NPT Create a new program template.

NT Create a new record template.

O Execute (run) a TQL program.

P Print file or record compilation listing.

PP Print program compilation listing.

PPT Print program template listing.

PT Print record compilation listing.

R Execute (run) a TQL program.

S Display summary of files and records.

SMFILE Invoke TIP SMFILE utility.

SP Display summary of programs.

SPT Display summary of program templates.

SS Display summary of DMS schemas.

ST Display summary of record templates.

TFD Invoke TFD to manipulate a screen definition.

U Update a record definition.

UC Update TQL control record.

UF Update a file definition.

UP Update a program definition.

UPT Update a program template definition.

UT Update a record template definition.

W Write record source to an external file.

WP Write program source to an external file.

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 121

WPT Write program template source to an external file.

WT Write record template source to an external file.

XF Print cross reference of file use.

XFC Recompile all programs that reference specified
files.

XP Print cross reference of programs showing files and
records used.

XR Print cross reference of record use.

XRC Recompile all programs that reference specified
records.

TQL Commands

Command Summary

Command Description

AF Define a file to the TQL system using information in
the TIP catalogue if available.

AS Add a DMS schema definition to TQL.

C Compile a record definition from a UNIX file.

CD Changes current working directory.

CF Compile a file definition from a UNIX file.

COMP Recompile records and/or programs in the TQL
system without editing.

CP Compile a program definition from a UNIX file.

CPT Import a program template from a UNIX file.

CT Import a record template from a UNIX file.

DEL Delete files and/or record definition.

DP Delete program definition.

DPT Delete program template.

DS Delete a schema definition.

DT Delete record template.

E End TQL monitor.

EDIT Invokes TQLEDT on the specified file.

TIP Query Language

122 Draft 2.5 - Confidential IP-627

H Display TQLMON command help information.

L List file and/or record compilation listing.

LP List program compilation listing.

LPT List program template source.

LT List record template source.

M Generate screen format(s) for a program.

N Create a new record definition.

NF Create a new file definition.

NP Create a new program definition.

NPT Create a new program template.

NT Create a new record template.

O Execute (run) a TQL program.

P Print file or record compilation listing.

PP Print program compilation listing.

PPT Print program template listing.

PT Print record compilation listing.

R Execute (run) a TQL program.

S Display summary of files and records.

SMFILE Invoke TIP SMFILE utility.

SP Display summary of programs.

SPT Display summary of program templates.

SS Display summary of DMS schemas.

ST Display summary of record templates.

TFD Invoke TFD to manipulate a screen definition.

U Update a record definition.

UC Update TQL control record.

UF Update a file definition.

UP Update a program definition.

UPT Update a program template definition.

UT Update a record template definition.

W Write record source to an external file.

WP Write program source to an external file.

WPT Write program template source to an external file.

WT Write record template source to an external file.

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 123

XF Print cross reference of file use.

XFC Recompile all programs that reference specified
files.

XP Print cross reference of programs showing files and
records used.

XR Print cross reference of record use.

XRC Recompile all programs that reference specified
records.

AF - Add File

The AF command is used to import a file definition into the TQL system.
The file must already be defined to TIP.

The file specified must match a file entry defined in the TIP security file.

The AF command has two modes. The first is single entry mode where a
specific file is imported. If the file is already defined to TQL an error will
occur.

The second mode is used for multiple file imports. This mode can be
entered by specifying the “*” wild-card character in the file name. In this
mode files that are already defined to TQL will be updated automatically
(no error will occur). This is similar behavior to the UF command.

To define a file to TQL that is not already defined to TIP you can use the
NF or SMFILE command to define the file to TIP.

Syntax:

AF file

Where:

file The file name of the file to import into TQL.

Example:

AF TSPFILE *> Import the file definition for TSPFILE
AF PAY* *> Import all file definitions starting with PAY

AS - Add Schema

The AS command is used to add a schema definition to the TQL system.
The schema must already have been created using the TIP/dbi schema
compiler.

Syntax:

AS schema

TIP Query Language

124 Draft 2.5 - Confidential IP-627

Where:

schema The name of the schema to define to TQL.

Example:

AS DMSSCH *> Import the schema definition for DMSSCH

C, CF, CP, CPT, CT - Compile From External Source

These commands are used to define items to the TQL system using
source files external to the system. The item being defined to the system
depends on the following commands:

C Record definition

CF File definition

CP Program definition

CPT Program template definition

CT Record template definition

The CPT and CT commands do not involve any compilation and just copy
the source into the system.

When an item is compiled, TQL creates a listing that can be viewed using
one of the TQLMON list commands (L or LP). If there are any compile
warnings, TQL will display a message to indicate that the item was
compiled with warnings and the actual warning messages can be viewed
at the front of the listing.

If errors are encountered when using the C, CF or CP commands, an
error list will be displayed and the editor will be invoked to allow correcting
the error.

If the item being compiled already has a definition in the TQL system then
a prompt for overwrite permission will be presented.

Syntax:

C file
CF file
CP file
CPT file
CT file

Where:

file The UNIX file where the source is located. The file name
specified is case sensitive.
If the file name is not an absolute path name then
TQLMON will look in the following directories in the
following order:

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 125

 the current directory
 the directory specified by the $HOME environment

variable
 the directory $TIPROOT/src/tql

Example:

C /u/george/src/foo.fil *> explicit file reference
(record)
C TQLTSP.trd *> look in search path (record)
CPT DEFAULT.tpd *> look in search path (program
template)

Additional Considerations:

Previous releases of TQL and TQL for TIP/30 supported compiling file
definitions from external source using the C command. This functionality
has been removed and is now accomplished using the CF command.

CD - Change Current Working Directory

The CD command changes the current working directory for the current
TQLMON session. This command is useful when compiling or writing
modules that are external to TQL.

Syntax:

CD directory

Example:

CD /var/tmp

COMP - Compile Existing Records and/or Programs

The COMP command will recompile records and/or programs without
invoking the editor first. If any errors are encountered the editor will be
invoked to provide an opportunity to fix the error before continuing. This
command is most often used when a record definition (or file definition)
has changed and programs that use the record have to be recompiled.

If one parameter is specified COMP assumes that program definitions are
to be recompiled. Two parameters specify that the record definitions are
to be recompiled. If COMP is invoked without parameters a prompt will
appear to query the user whether to recompile the records, programs or
both.

File definitions do not need to be recompiled.

Syntax:

COMP progname
COMP file record

TIP Query Language

126 Draft 2.5 - Confidential IP-627

Where:

progname
Name of the existing TQL program to be compiled.

file recname
The COMP command can be used to recompile an existing
record definition. The filename and record name must be
specified.
If no parameters are specified prompt will be presented to
request the compilation type. The choices here are to
recompile everything, records or programs.

Example:

COMP TQLTSP *> recompile the program TQLTSP
COMP * * *> recompile all records
COMP B* *> recompile all programs beginning with B

DEL - Delete File or Record

The DEL command deletes a single record or single file definition from
the TQL system. A file definition can not be deleted until all associated
record definitions are deleted.

Syntax:

DEL file [record]

Where:

file The name of a file defined in the TQL system.

record
The name of a record of that file.

If this parameter is omitted, the specified file definition is
deleted.

Example:

DEL PAYMST PAYREC *> delete the record PAYMST/PAYREC
DEL PAYMST *> delete the file PAYMST

DP - Delete Program

The DP command will delete a program from the TQL system. All traces
of the program will be removed from the system. Because of the
destructive nature of this command a prompt must be answered to
finalize the operation.

Syntax:

DP progname

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 127

Where:

progname
The name of a program defined in the TQL system.

Example:

DP PAYINQ *> delete the program PAYINQ

DPT, DT - Delete Program or Record Template

The DPT command deletes the source for a program template and DT
deletes the source for a record template. The program and record
template DEFAULT is special to TQL and may not be deleted. . Because
of the destructive nature of this command a prompt must be answered to
finalize the operation.

Syntax:

DPT name

DT name

Where:

name The name of a template defined in the TQL system.
The type of template deleted is based on the command
type.

Example:

DPT TMPL *> delete the program template TMPL
DT RECTMPL *> delete the record template RECTMPL

DS - Delete Schema

The DS command will delete a schema from the TQL system. All traces
of the schema will be removed from the TQL system only. This command
will not affect usage of the specified schema by programs other than TQL.

Syntax:

DS schema

Where:

schema
The name of a schema defined in the TQL system.

Example:

DS DMSSCH *> delete the schema DMSSCH

TIP Query Language

128 Draft 2.5 - Confidential IP-627

E - End TQLMON Program

The End command terminates interaction with the TQL monitor program
and return to the calling program or the TIP command line.

Syntax:

E

EDIT - Edit a Source File

The EDIT command will invoke TQLEDT on a specified file. This
command is intended for editing of general text files that are not related to
the TQL system. TQL will automatically invoke an editor when creating or
updating TQL entries. No compilation will occur when changes are made
using this command.

Syntax:

EDIT filename

Example:

EDIT /home/tipixusr/log.tipix

HELP - Display Help Information

The help command will display help information for the TQL monitor
program. Two forms of help are available. If the help command is entered
without a parameter then a command summary is displayed showing the
syntax for each command. If help is specified for a given command then a
more detailed description of that command is displayed

Syntax:

Help [command]

Where:

command
Display help for this command.

If this is omitted then the command summary will be
displayed.

Example:

HELP *> display command summary
H AF *> display help on the AF command

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 129

L - List File/Record

The LIST command will display the compilation listing of a file or record
definition. This display in on AUX0. To print to another destination, see
the P command.

Syntax:

L file [record]

Where:

file The name of a file defined in the TQL control file.

record
The name of a record defined for the named file.

If this parameter is omitted then the compilation listing for
the named file will be displayed.

Example:

L PAYMST PAYREC *> list the compilation PAYMST/PAYREC
L PAYMST *> list the file compilation listing for PAYMST

LP - List Program

The LP command displays the compilation output for a program. The
output is on AUX0. To print to another destination, see the PP command.

Syntax:

LP name

Where:

name
The name of a program defined in the TQL system.

Example:

LP PAYINQ *> display the program PAYINQ

LPT, LT - List Program or Record Template

The LPT command displays the source for a program template and LT
displays the source for a record template. The output is printed on AUX0.
To print to another destination, see the PPT/PT command.

Syntax:

LPT name
LT name

TIP Query Language

130 Draft 2.5 - Confidential IP-627

Where:

name The name of a template defined in the TQL system.
The type of template listed is based on the command type.

Example:

LPT DEFAULT *> display the DEFAULT program template
LT DEFAULT *> display the DEFAULT record template

M - Make Screen Formats

This command directs TQL to generate screen formats for the indicated
display definitions in a named TQL program. The generated screen
formats have names as specified in the USING clause in the DISPLAY
DIVISION of the TQL program.

The screen generated is a basic screen. It is intended to be an automated
quick start to allow testing of a program without having to spend a lot of
time to design a screen. Once the program is working as intended, you
can use the TFD utility to improve the look of the screen format. While in
TQLMON you can edit the screen format by using the TFD command
which invokes the TIP TFD utility.

If a screen format already exists a prompt is presented for overwrite
permission. This command should be used with care because it is easy to
destroy a custom screen format.

Syntax:

M name [display]

Where:

name The name of a program defined in the TQL system.

The program name may be specified using standard prefix
notation.

displayThe name of the TQL display definition that describes the
screen format to be created. This is not the name specified
in the USING clause in the DISPLAY DIVISION.

This parameter may be specified using standard prefix
notation.

If this parameter is omitted, ALL screen formats will be built
for the specified program. TQL prompts for confirmation
that this is what you want to do.

Example:

Given the following:

PROGRAM-ID. MYTEST.

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 131

 ...
DISPLAY DIVISION.
MY-DISP: READ ...
...

USING S1.

MY-DISP2: READ ...
...

USING S2.

DISP1: READ ...
...

USING S3.

M MYTEST *> make all formats (S1, S2 and S3)

M MYTEST MY-DISP2 *> make the format used
*> by MY-DISP2 (S2)

M MYTEST MY* *> make formats for displays beginning with
*> MY (S1 and S2)

N - Define New Record

This N command creates a new record definition.

The initial contents of the source file will depend on the parameters
supplied. The parameters are described in greater detail in the Syntax
section.

If the item already exists you will be prompted for update intentions. This
is similar to using the U command.

When the user ends the editing session, TQLMON will automatically
compile the record definition composed by the user. On successful
compilation the source will be posted into the system. If any compile
errors are encountered the source will not be posted. If you choose not to
fix the errors the item will not be defined to the system and you will have
to use the N command again.

Syntax:

N file record [template]
N file record file2 record2

TIP Query Language

132 Draft 2.5 - Confidential IP-627

Where:

file Name of the file that this record will be associated with.

TQLMON will substitute this text for the $FILE marker in
the source used as the template for this record.

If this first parameter is omitted a query screen will appear.

record
The name of the record.

TQLMON will substitute this text for the $RECORD marker
in the source used as the template for this record.

template
If there are three parameters then the third parameter is
assumed to be a record template already defined to the
system. This template will be used as the basis for the new
record. The template DEFAULT will be used if only two
parameters are supplied.

file2 record2
If there are four parameters then the new record definition
will be based on the source for the record record2
associated with the file file2.

Example:

N PAYROLL PAYREC *> create a record PAYREC associated
*> with the file PAYROLL. Base the initial source
*> on the template DEFAULT

N PAYROLL PAYREC TMPL1 *> as above but using the
*> template TMPL1

N PAYROLL PAYREC PAYMST REC1 *> as above but basing the
*> initial source on the existing record definition
*> PAYMST/REC1.

NF - Define New File

The NF command invokes the SMFILE command. See SMFILE - Invoke
SMFILE for more information. This allows definition of a new file to TIP.

Once the file has been defined to TIP the AF command must be used to
import the definition into TQL. The NF command is currently unable to do
this step on your behalf.

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 133

NP - Define New Program

This NP command creates a new program definition. The initial contents
of the source file will depend on the parameters supplied. The parameters
are described in greater detail in the Syntax section.

If the item already exists you will be prompted for update intentions. This
is similar to using the UP command.

When the user ends the editing session, TQLMON will automatically
compile the program definition composed by the user. On successful
compilation the source will be posted into the system. If any compile
errors are encountered the source will not be posted. If you choose not to
fix the errors the item will not be defined to the system and you will have
to use the NP command again.

Syntax:

NP progname [template]

Where:

progname
The name of the TQL program that is to be created.

TQLMON will substitute this name for the $PROGRAM
marker in the source used as the template for this
program.

template
This parameter specifies the item to be used as the basis
for the new program. If this parameter is omitted the new
program will be based on the DEFAULT template. This
name must reference either a defined template or defined
program.

TQLMON will check this name against the template list first
and then against the program list if no template was found.

Example:

Given the following:

 - a template named TMPL
 - a template named BOTH
 - a program named TQLTSP
 - a program named BOTH

NP TESTPRO *> new program based on template DEFAULT
NP TESTPRO TMPL *> new program based on template TMPL
NP TESTPRO TQLTSP *> new program based on program TQLTSP
NP TESTPRO BOTH *> new program based on template BOTH
NP *> present query screen for input

TIP Query Language

134 Draft 2.5 - Confidential IP-627

NPT - Define Program Template

This NPT command creates a new program template definition. The initial
contents of the source file will depend on the parameters supplied. The
parameters are described in greater detail in the Syntax section.

If the item already exists you will be prompted for update intentions. This
is similar to using the UPT command.

When the user ends the editing session, TQLMON will post the template
into the system

Syntax:

NPT name [template]

Where:

name The name of the template to define to the TQL system.

template
Name of the item to use as the base of this template.
TQLMON will check this name against the program
template list first and then against the program list if no
template was found.
If no template is specified DEFAULT will be used.

Example:

Given the following:

 - a template named TMPL
 - a template named BOTH
 - a program named TQLTSP
 - a program named BOTH

NPT TESTPRO *> new program template TESTPRO based on
*> the template DEFAULT

NPT TESTPRO TMPL *> new program template TESTPRO based
*> on the template TMPL

NPT TESTPRO TQLTSP *> new program template TESTPRO based
*> on the program TQLTSP

NPT TESTPRO BOTH *> new program template TESTPRO based
*> on the template BOTH

NPT *> present query screen for input

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 135

NT - Define Record Template

This NT command creates a new record template definition. The initial
contents of the source file will depend on the parameters supplied. The
parameters are described in greater detail in the Syntax section.

If the item already exists you will be prompted for update intentions. This
is similar to using the UT command.

When the user ends the editing session, TQLMON will post the template
into the system.

Syntax:

NT name [template]
NT name [file record]

Where:

name The name of the template to define to the TQL system.

template
Name of the item to use as the base for this template.
TQLMON will check this name against the record template
list. If no template is specified DEFAULT will be used.

file record
Name of an existing record definition to use as the base for
this template.

Example:

NT TESTPRO *> new record template TESTPRO based on
*> the template DEFAULT

NT TESTPRO TMPL *> new record template TESTPRO based on
*> the template TMPL

NT TESTPRO FILE1 REC1 *> new record template TESTPRO
*> based on the record REC1 associated with the file
*> FILE1

NT *> present query screen for input

O - Open Program

The OPEN command allows the programmer to execute a TQL program.
This command eliminates the need to end the TQL monitor and then use
the OPEN transaction.

When the TQL program completes, control will return to TQLMON.

Syntax:

OPEN progname

TIP Query Language

136 Draft 2.5 - Confidential IP-627

Where:

progname
The name of a TQL program defined in the TQL system.

Example:

OPEN PARTINQ *> run the program PARTINQ

P - Print File/Record

The P command prints the compilation listing of a file or record definition.
The output may be printed on any device supported by TIPPRINT. The
default print destination is PRNTR.

Syntax:

P file [,record] [,dest]

Where:

file The name of a file defined in the TQL system.

record
The name of the record to be printed.

If record name is omitted, only the file compilation is
printed.

dest The desired print destination.

Example:

P TSPFILE *> print file listing for TSPFILE to TIPPRINT
*> destination PRNTR.

P TSPFILE,,MYPRNTR *> as above but use MYPRNTR as the
*> output device.

P TSPFILE TQLTSPR *> print the record TQLTSPR for the
*> file TSPFILE on the default printer destination.

P TSPFILE TQLTSPR MYPRNTR *> as above but use MYPRNTR as
*> the output device.

PP - Print Program

The PP command prints the compilation listing of a TQL program. The
output may be printed on any valid TIPPRINT destination. The default
destination is PRNTR.

Syntax:

PP progname [dest]

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 137

Where:

program
The name of a program defined in the TQL system.

dest The desired print destination.

Example:

PP TQLTSP *> print program listing for TQLTSP using the
*> default TIPPRINT destination.

PP TQLTSP MYPRNTR *> print the program TQLTSP using
*> MYPRNTR as the output destination.

PPT, PT - Print Program or Record Template

The PPT command prints the source for a program template and PT
prints the source for a record template. This default destination is
PRNTR.

Syntax:

PPT name [dest]
PT name [dest]

Where:

name The name of a template defined in the TQL system.
The type of template listed is based on the command type.

dest The desired print destination.

Example:

PPT DEFAULT *> display the DEFAULT program template
PT DEFAULT *> display the DEFAULT record template
PPT TMPL AUX1 *> print program template TMPL on AUX1

RUN, R - Run TQL Program

The RUN command allows the programmer to execute a TQL program
without exiting from TQLMON. This command is identical to the "OPEN"
command described earlier.

Syntax:

RUN progname
R progname

Where:

progname
The name of a TQL program defined in the TQL system.

TIP Query Language

138 Draft 2.5 - Confidential IP-627

Example:

RUN PARTINQ *> run the program PARTINQ

S - Summarize File/Record

The S command will display a list of existing file and/or record definitions
that are presently in the TQL system. File and/or record names may be
selected by prefix. The listing may be interrupted by pressing the
CANCEL key.

If no output destination is specified output is sent to AUX0. The
destination specified may be any valid TIPPRINT destination.

Syntax:

S [file [record] [dest]]

Where:

file The name of a file defined in the TQL system. The file
name may be specified using standard prefix notation.

The file name is optional; default is all files (*).

record
The record name to be listed. The record name may be
specified using standard prefix notation.

If omitted only file entries will be listed.

dest Desired output destination.

Example:

S *> show all files
S * * *> show all files and records
S * B* *> show all files and any records starting with B
S * * PRNTR *> print all files and records to PRNTR

SMFILE - Invoke SMFILE

This command provides access to the TIP file definition utility SMFILE.
This allows for defining a file to TIP without having to leave TQLMON.
See the TIP Utilities manual for further information on SMFILE.

Syntax:

SMFILE [command filename]

Where:

command
A valid SMFILE command

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 139

filename
The name of the file that SMFILE is to manipulate.

Example:

SMFILE AD TESTFILE *> invoke the SMFILE utility to
*> define the file TESTFILE to TIP

SMFILE *> invoke SMFILE

SP - Summarize Programs

The SP command displays a list of programs that are presently in the
TQL system. The listing may be interrupted by pressing CANCEL.

Syntax:

SP [program [dest]]

Where:

program
The name of a program defined in the TQL system. The
file name may be specified using standard prefix notation.

The program name is optional; default is all programs (*).

dest Desired output destination.

Example:

SP *> show all programs
SP * *> show all programs
SP B* *> show all programs starting with B
SP B* PRNTR *> print all programs starting
*> with B to PRNTR

SPT, ST - Summarize Program or Record Templates

The SPT command displays a list of program templates that are presently
in the TQL system. The ST command displays a list of the record
templates that are presently in the system. The listing may be interrupted
by pressing CANCEL.

Syntax:

SPT [template [dest]]

ST [template [dest]]

Where:

template The name of a template defined in the TQL system.
The template name may be specified using standard prefix

TIP Query Language

140 Draft 2.5 - Confidential IP-627

notation.
The template name is optional; default is all templates (*).
The template type depends on the command used.

dest Desired output destination. This may be any valid
TIPPRINT destination.

Example:

SPT *> show listing of all program templates
ST *> show listing of all record templates

SPT B* *> show listing of all programs templates
 *> starting with B

SP B* PRNTR *> print listing of all record templates
*> starting with B to PRNTR

SS - Summarize Schemas

The SS command displays a list of schemas that are defined in the TQL
system. The listing may be interrupted by pressing CANCEL.

Syntax:

SS [schema [dest]]

Where:

schema
The name of a schema defined in the TQL system. The file
name may be specified using standard prefix notation.

The program name is optional; default is all schemas (*).

dest Desired output destination.

Example:

SS *> show all schemas
SS * *> show all schemas
SS B* *> show all schemas starting with B
SS B* PRNTR *> print all schemas starting
*> with B to PRNTR

TFD - Invoke TFD

The TFD command provides access to the TIP screen definition utility
TFD. This allows for screen editing without having to leave TQLMON.
See the TIP Utilities manual for further information on TFD.

When TFD is invoked from the TIP command line or a UNIX shell, any
special characters must be escaped to avoid special shell processing.

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 141

When in TQLMON this is not required because TQLMON will take care of
any required name conversion for you.

Syntax:

TFD [screen]

Where:

screen
Name of the screen to edit. If no parameter is supplied with
the command TFD will start without presenting a screen.

Example:

TFD MY$SCREEN *> edit the screen MY$SCREEN
*> (no need to escape the "$").

U - Update Record Definition

This U command updates an existing record definition.

When the user ends the editing session, TQLMON will automatically
compile the record definition composed by the user. On successful
compilation the source will be posted into the system. If any compile
errors are encountered the source will not be posted.

Syntax:

U file record

Where:

file Name of the file that this record is associated with.

record
The name of the record to update.

Example:

U PAYROLL PAYREC *> update the record
*> PAYREC associated with the file PAYROLL.

UC - Update Control Record

The UC command is used to perform maintenance operations on the
control record in the TQL control file. The control record contains
configuration selections that govern certain aspects of the behavior of
TQL.

Syntax:

UC

TIP Query Language

142 Draft 2.5 - Confidential IP-627

There are no parameters for this command.

The TQLMON UC command displays the screen format shown below.

Pressing the CANCEL key exits the “UC” command without changing the
control record.

Where:

Read Password
The user may enter a value in this field to set a new read
password for the TQL control file.

TQL programmers wishing to perform read operations on
the TQL control file are required to supply this password.

If a password is set this field will be shown as all asterisks.

Write Password
The user may enter a value in this field to set a new update
password for the TQL control file.

TQL programmers wishing to make changes to the
contents of the TQL control file are required to supply this
password.

If a password is set this field will be shown as all asterisks.

TQL Path:
The path defining where the TQL system is located.

Maximum reads
This configuration option controls the default value to be

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 143

used as the MAXREAD specification if a TQL program
does not specify the clause.

This value specifies the maximum number of reads to be
performed before relinquishing temporary control to TIP via
a TIPTIMER call. TQL checks for user interruption every
MAXREAD number of records read.

Default: 1000

Use TIP Currency
When this is set to Y, TQL will use the currency symbol
defined to TIP instead of the default currency symbol "$".

Default: N

OPEN Security Level
This configuration option controls the access to the OPEN
command in TQLRUN. The user’s security value must be
equal to or less than this value to allow use of the OPEN
command.

If this value is 0 then no one can run another TQL program
from a TQL program.

Default: 255

Use TIP Decimal
When this is set to Y, TQL will assume DECIMAL-POINT
IS COMMA if the decimal point defined to TIP is not the "."
character.

Default: N

Display TQL MENU
This configuration option controls whether TQL is to
display a menu of available TQL programs if TQL is
invoked without a program name (for example: a user
executes the transaction “OPEN” with no parameters).

Default: Y

Use paging file
Not used.

Journal TQL program start
Not used.

Print title page
A block-letter style header page will be produced if Y is
specified.

Default: N

TIP Query Language

144 Draft 2.5 - Confidential IP-627

FIELDS OF Group
When this option is set to Y then any group item used in a
display will be replaced by all non-FILLER subfields of the
group.

Default: N

READ VIA ID Bypass
When this option is set to Y then a READ VIA will not
validate the record retrieved using the ID clause for that
record.

Note: Use of this option is highly discouraged. It is
provided to support TQL programs that took
advantage of a bug in TQL for TIP/30 in which ID
clauses were ignored on a READ VIA statement.
The offending programs should be corrected and
this flag reset to enforce the ID clause validation.

Default: N

Ambiguity Resolution
When this option is set to Y then TQL will not report
ambiguous references in ad hoc statements when the
reference is a full data name. In this case TQL will use the
first field that matches. TQL will continue to flag errors on
ambiguous substring abbreviations.

Default: N

Declarative READ FROM
When this option is set to Y the behavior of the READ
FROM statement in a declarative is changed to always
issue a SETL. When the option is N the SETL is only done
for the first READ FROM execution for a given parent
record.

Default: N

Use Micro Focus Sign
Defines which compiler’s numeric unpacked sign
convention to use. If using the Micro Focus COBOL
compiler, set this to Y.

Default: N

Emulate TIP/30 TQL Math
TIP/30 TQL always added 3 digits of precision to the left
operand of a divide operator in a compute statement. In
addition, all math results and moves involving numerics
were done with rounding.

When this flag is set to Y TQL will emulate this behavior.
When the flag is set to N TQL does not do automatic

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 145

rounding and the intermediate results for numeric
operations follows those for OS/3 COBOL ’85.

Default: N

Always TREN Updates
This flag controls whether TREN is called for each record
in an UPDATE or only on completion of the UPDATE
command. This case occurs with the command UPDATE
record FROM keyval ... in which case a series of records
could be updated by one command.

Note: Use of this option is not recommended because it
violates the principle of the update cycle by
committing records before all records in the update
command have completed.

Default: N

Allow Reset READ FROM
When this flag is set to Y then if the field used in a
compiled FROM changes value then the READ FROM will
reset its sequential position. This usually happens only
when a new driving record has been read.

This option may also be set on a program basis using the
RESET READ FROM clause (See IDENTIFICATION
DIVISION).

Programs must be recompiled when this flag is changed
for the change to have any effect

Default: N

Pre-process Commands
When this flag is set to Y all ad hoc commands will be
preprocessed to look for any reserved word conversions.

Default: N

READ FROM Check Bypass
When this flag is set to Y and the field used as the FROM
specifier is a field in the record being read, TQL will return
the first record that is greater than or equal to the key
FROM specifier or PIB-EOF.

Default: N.

Failed Read Initializes
When this flag is set to Y, the record area after a failed
read contains initialized data (SPACES in alphanumeric
and ZEROES in numeric).

When this is set to N, the contents of the record area after
a failed read are left intact from any previous operations.

TIP Query Language

146 Draft 2.5 - Confidential IP-627

Default: N

Use DOS Extensions
When this flag is set to Y, and an export to a file is
performed. The file that the data is exported to may have a
DOS extension. Otherwise if the flag is set to N, then the
default extension for the output file is “PRN”.

Function Keys
The fields in this section allow the specification of the
function key numbers corresponding to the advertised TQL
function.

For example, to assign F8 to the "delete record"
functionality of TQL, enter 8 in the field named "Delete:".

The default values are shown in the screen above.

UF - Update File Definition

The UF command retrieves from TIP the current file information for the
specified file. To see the information as TQL sees it use the L command.

If the user does not press the TRANSMIT key, (for example, presses the
CANCEL key instead), the update file command is canceled without
making any changes.

Syntax:

UF filename

Where:

filename
Name of the file that is to be updated.

UP - Update Program Definition

The UP command updates an existing program definition.

When the user ends the editing session, TQLMON will automatically
compile the program definition composed by the user. On successful
compilation the source will be posted into the system. If any compile
errors are encountered the source will not be posted.

Syntax:

UP progname

Where:

progname
The name of the TQL program that is being updated.

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 147

Example:

UP TESTPRO *> update program TESTPRO

UPT, UT - Update Program or Record Template

The UPT command updates the source for a program template and UT
updates the source for a record template.

When the user ends the editing session, TQLMON will post the template
into the system.

Syntax:

UPT name

UT name

Where:

name The name of a template defined in the TQL system.
The type of template listed is based on the command type.

Example:

UPT DEFAULT *> update the DEFAULT program template
UT DEFAULT *> update the DEFAULT record template

W - Write File/Record Definition to Source File

The W command writes the source for file or record definitions stored in
the TQL system to a specified file. This function may be performed as
part of a backup scheme or to facilitate transporting TQL definitions.

Syntax:

W file [record] [unixfile]

Where:

file The name of a file defined in the TQL system.

record The name of a record defined for the specified file.
If this parameter is omitted the file definition for "file" is
written.

unixfileUNIX output file. If this parameter is not supplied, a dialog
box is displayed to prompt for the name using the value of
the environment variable $HOME as the initial destination.
If this parameter is:

a directory name, a file named <record>.trd or <file>.tfd is written
to that directory

TIP Query Language

148 Draft 2.5 - Confidential IP-627

a file name, the definition is written as that file name

Example:

Given that:

 /tmp is a directory
 outfile is a regular file

W PAYMAST PAYREC /tmp *> writes record
*> source to /tmp/PAYREC.trd

W PAYMAST /tmp *> writes file source to
*> /tmp/PAYMAST.tfd

W PAYMAST outfile *> writes file source to
*> outfile in the current directory.

WP - Write Program Source to File

The WP command writes the source for program definitions stored in the
TQL system to a specified file. This function may be performed as part of
a backup scheme or to facilitate transporting TQL definitions.

Syntax:

WP progname unixfile

Where:

progname The name of a program defined in the TQL system.

unixfileUNIX output file. If this parameter is not supplied, a dialog
box is displayed to prompt for the name using the value of
the environment variable $HOME as the initial destination.
If this parameter is:

a directory name, a file named <progname>.tpd is written to that
directory

a file name, the definition is written as that file name.

Example:

Given that:

 /tmp is a directory
 outfile is a regular file

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 149

WP PAYINQ /tmp *> write program source to
*> /tmp/PAYINQ.tpd

WP PAYINQ outfile *> write program to
*> outfile in the current directory

WPT, WT - Write Program/Record Template to Source File

The WPT command writes the source for program template definitions
stored in the TQL system to a specified file and the WT commands writes
record template definitions. This function may be performed as part of a
backup scheme or to facilitate transporting TQL definitions.

Syntax:

WPT template unixfile

WT template unixfile

Where:

template
The name of a template defined in the TQL system.

The type of the template written depends on the command
used.

unixfile
UNIX output file. If this parameter is not supplied, a dialog
box is displayed to prompt for the name using the value of
the environment variable $HOME as the initial destination.

If this parameter is:
 a directory name,

a file named <template>.tpd or <template>.trd is written
to that directory

 a file name,
the definition is written as that file name.

Example:

Given that:

 /tmp is a directory
 outfile is a regular file

WPT DEFAULT /tmp *> write program template
*> DEFAULT to /tmp/DEFAULT.tpd

WT DEFAULT /tmp *> write record template
*> DEFAULT to /tmp/DEFAULT.trd

TIP Query Language

150 Draft 2.5 - Confidential IP-627

WT DEFAULT outfile *> write record template
*> DEFAULT to outfile in the current
*> directory

XF/XFC - Cross Reference Files

The XF command generates a report showing which TQL programs
reference one or more specified files. The XFC command, omits the
generated report but compiles all the programs that reference the file(s).

Syntax:

XF [file [dest]]

XFC [file]

Where:

file Name (or prefix) of TQL file to cross reference. Default: *
(all files).

dest TIPPRINT printer destination for output. Default: AUX0 (the
terminal in full screen mode).

Example:

XF TSPFILE *> show all programs using the file TSPFILE
XFC TSPFILE *> compile any programs using the
*> file TSPFILE

XP - Cross Reference Programs

The XP command generates a report showing the files and records that
are referenced by one or more TQL programs.

Syntax:

XP [prog] [dest]

Where:

prog Name (or prefix) of TQL program names to cross
reference. Default: * (all programs).

dest TIPPRINT printer destination for output. Default: AUX0 (the
terminal in full screen mode).

Example:

XP TQL* *> Show all files and records used
*> by programs beginning with TQL

TQLMON - TQL Development Environment

9-Jan-2004 Draft 2.5 - Confidential 151

XR/XRC - Cross Reference Records

The XR command generates a report showing which TQL programs
reference one or more specified record names. The XRC command omits
the generated report but compiles all the programs that reference the
record(s).

Syntax:

XR [file] [recd] [dest]

XRC [file] [recd]

Where:

file Name (or prefix) of TQL file to cross reference. Default: *
(all files).

recd Name (or prefix) of TQL record name to cross reference.
Default: * (all records).

dest TIPPRINT printer destination for output. Default: AUX0.

Example:

XR PAYMAST PAYREC *> show all programs that
*> use the record PAYMAT/PAYREC.

XRC TSPFILE TQLTSPR *> compile all programs
*> that use the record TSPFILE/TQLTSPR.

TIP Query Language

152 Draft 2.5 - Confidential IP-627

TQLADMIN - TQL System Administration

TQLADMIN Features
TQL maintains information about the system by using a central control file
as well as sub-directories under the $TIPROOT/tql directory. The control
file and files in the $TIPROOT/tql directory should not be manipulated
outside of the TQL environment.

This section describes initialization and verification of the TQL system
and the target audience for this section is the TQL system administrator.

TQLADMIN is the administration program. It can be used to perform
system initialization, verification, cleaning and rebuilding. Under most
circumstances only the initialization functionality will be needed. If the
TQL system is manipulated outside of the TQL environment then the
system can become inconsistent. The verify, clean and rebuild
functionality will put the system back into a consistent state.

These functions are described in greater detail in the following sections.

Initializing the TQL Control File
The TQL system must be initialized before it is used for the first time. This
initialization process catalogues the TQL control file to TIP, creates the
file and writes a configuration record. The default templates records are
also added.

Syntax:

TQLADMIN INIT
TQLINT

TQLINT is a synonym for TQLADMIN INIT.

On invocation of the initialization function there are four prompts to be
answered.

Update Password

This is asking for the password that will have to be entered when starting
TQLMON if intending to make changes. If no password is entered then
any user may start TQLMON in update mode.

See the TQLMON UC command for more information on the READ and
WRITE passwords.

TQL$CTL already catalogued. Reset defaults

TQLADMIN - TQL System Administration

9-Jan-2004 Draft 2.5 - Confidential 153

If the system has been initialized already then the control file catalogue
entry will already exist. You may reset the entries in the SMFILE record to
the system defaults.

This record is not usually modified once installed so resetting to the
defaults will not destroy any information.

This prompt will not appear if this is the first time this program is being
run.

TQL$CTL security record already exists. Reset defaults

If the system has been initialized already then the control file security
record will already exist. You may reset the entries in the SMSEC record
to the system defaults.

This record is not usually modified once installed so resetting to the
defaults will not destroy any information.

This prompt will not appear if this is the first time this program is being
run.

Control record already exists. Reset defaults

If the system has been initialized already then the control record in the
control file will already exist. You may reset the entries in this record to
the system defaults.

This record contains information modifiable by users of TQLMON using
the UC command. Items such as function key assignments, passwords
and general flags are stored in this record. If the record is reset to the
defaults then any customizations will be lost.

There are times when the control record will have to be reset. If the
update password has been set but has been forgotten then the control
record will have to be reset (using the new password supplied above).
TQL also maintains the path of the system. If the control file is moved
then the path will no longer be valid and TQL will fail to start. The control
record will have to be rewritten.

This prompt will not appear if this is the first time this program is being
run.

The following is the output from running the initialization function and
answering yes to the prompts. No update password is being assigned at
this point and the system has been initialized before.

TQLADMIN - TQL Control File Administration (99/03/25 2.3 R1 - 0000)
UPDATE PASSWORD>
TQL$CTL already cataloged. Reset defaults? >Yes >No
TQL$CTL security record already exists. Reset defaults? >Yes >No
Control record already exists. Reset defaults? >Yes >No

If the answer to any query is "No", then you will be asked if you wish to
continue. If you answered "No" the continue prompts the initialization
process will be aborted. If you answered "No" because you didn't want

TIP Query Language

154 Draft 2.5 - Confidential IP-627

the data reset but do want to initialize the control file then answer "Yes" to
the continue prompts.

The following is the output showing the results of answering yes and no
the continue prompts.

TQLADMIN - TQL Control File Administration (99/03/25 2.3 R1 - 0000)
UPDATE PASSWORD>
TQL$CTL already cataloged. Reset defaults? >Yes >No
(Yes selected)
TQL$CTL security record already exists. Reset defaults? >Yes >No
(No selected)
Continue? >Yes >No
(Yes selected)
Control record already exists. Reset defaults? >Yes >No
(No selected)
Continue? >Yes >No
(No selected)
Error initializing TQL.

Checking the TQL Control File

The consistency of the control file may be verified at any time using the
CHECK function of TQLADMIN. If the control file is incorrect for any
reason this function will report the problem. This function simply checks
the validity of the control file and makes no attempt to repair the file. To
repair the system, see the BUILD and CLEAN functions described in the
following sections.

The check involves verifying the contents of the control file against the
TQL directory structure and then checking the directory structure against
the control file. The majority of diagnostics are warnings because the
system can recover from the problem. The only real error exists when
there is a record in the control file but there is no associated source file.

Syntax:

TQLADMIN[,options] CHECK [dest]
TQLCHECK[,options] [,dest]

Where:

options
The following options are accepted:

O Overwrite - Use of this option implies an affirmative
answer to any prompt.

Q Quiet - Don't output any informational messages
while checking.

dest Any valid TIPPRINT destination. The default is ROLL.

TQLCHECK is a synonym for TQLADMIN CHECK.

TQLADMIN - TQL System Administration

9-Jan-2004 Draft 2.5 - Confidential 155

The following is the output from a sample run showing a number of
diagnostics.

The count of records processed will always be greater than the sum of all
the listed records because this count includes support records that are
not shown. In the above example there is one support record and that
happens to be the system control record. In most cases, the processed
count will be one greater than the sum of the listed record types.

Rebuilding the TQL Control File
The first control file repair function is the BUILD function. This scans the
TQL directory structure for source files and adds the missing control file
records.

On completion of the rebuild the TQL system should be recompiled to
bring everything up to date. The last step of the rebuild will be to invoke
the compiler to build the system.

Any existing invalid records in the control file are left intact. An invalid
control file record is a record for which no valid source file exists. Missing
ancillary files such as symbol table files do not invalidate the control file
record because they can be recreated if the source file is present. See
the following section for details on removing these invalid records.

There is an implied CHECK operation involved as part of the build.

It is highly recommended that BUILD is the first repair action taken when
bringing the TQL system back into a consistent state. This reduces the
risk of losing any required source files.

Syntax:

TQLADMIN[,options] BUILD [dest]
TQLBUILD[,options] [,dest]

Where:

options
The following options are accepted:

O Overwrite - Use of this option implies an affirmative
answer to any prompts. There are four possible
replies to the prompts: "NO", "YES", "END" and
"ALL". "END" is the same as "NO” but also stops
any further building. "ALL" is the same as "YES"
and indicates that all further queries are to be
automatically answered "YES".

Q Quiet - Don't output any informational messages
while building.

TIP Query Language

156 Draft 2.5 - Confidential IP-627

R Report - Display what actions would be performed
by build. No changes are actually made. This
allows for previewing the operations prior to
rebuilding.

dest Any valid TIPPRINT destination. The default is ROLL.

TQLBUILD is a synonym for "TQLADMIN build".

The following is the output from a sample run requesting a report of
actions to be taken.

TIP?>TQLBUILD,R
TQLADMIN - TQL Control File Administration (95/03/25 2.1 R1 - 0000)
Add FILE record for tqlfiles/TSPFILE.tfd
Add RECORD record for tqlfiles/TSPFILE/TQLTSPR.trd
Add PROGRAM record for tqlprogs/TQLTSP.tpd
Warning: Program TIPSYS: Intermediate code missing.
Warning: FILE record missing for record TSPFILE/TQLTSPR2
Warning: Record TSPFILE/TQLTSPR2: Symbol table missing.

The following is the output from a sample BUILD run. In this sample all
queries were answered YES.

TIP?>TQLBUILD
TQLADMIN - TQL Control File Administration (95/03/25 2.1 R1 - 0000)
Add FILE record for tqlfiles/TSPFILE.tfd >NO >YES >END >ALL
Add RECORD record for tqlfiles/TSPFILE/TQLTSPR.trd >NO >YES >END >ALL
Add PROGRAM record for tqlprogs/TQLTSP.tpd >NO >YES >END >ALL
Warning: Program TIPSYS: Intermediate code missing.
Warning: Record TSPFILE/TQLTSPR: Symbol table missing.
Warning: Record TSPFILE/TQLTSPR2: Symbol table missing.
The following types were added:
Files : 1
Records : 1
Programs : 1
Invoke compiler to finish rebuilding? >YES >NO
Compiling records...
Compile successful.
Compiling programs...
Compile successful.

Cleaning the TQL Control File
The second control file repair function is the CLEAN function. This
functions will remove any invalid control file records and also remove any
files in the TQL directory structure that should not be there.

An invalid control file record is a record for which no valid source file
exists. Missing ancillary files such as symbol table files do not invalidate
the control file record because they can be recreated if the source file is
present.

When all the files and control file records have been removed the TQL
system should be recompiled to bring everything up to date. The last step
of the cleaning will invoke the compiler to recompile the system.

TQLADMIN - TQL System Administration

9-Jan-2004 Draft 2.5 - Confidential 157

There is an implied check operation involved as part of the clean.

To reduce the risk of losing important source files it is recommended that
the BUILD function be used prior to using CLEAN. See the previous
section for more details on using BUILD.

Syntax:

TQLADMIN[,options] CLEAN [dest]

TQLCLEAN[,options] [,dest]

Where:

options
The following options are accepted:

O Overwrite - Use of this option implies an affirmative
answer to any prompts. There are four possible
replies to the prompts: "NO", "YES", "END" and
"ALL". "END" is the same as "NO” but also stops
any further cleaning. "ALL" is the same as "YES"
and indicates that all further queries are to be
automatically answered "YES".

Q Quiet - Don't output any informational messages
while cleaning.

R Report - Display what actions would be performed
by clean. No changes are actually made. This
allows for previewing the operations prior to
cleaning.

dest Any valid TIPPRINT destination. The default is ROLL.

TQLCLEAN is a synonym for "TQLADMIN clean".

The following is the output of a sample CLEAN run answering all queries
with "YES".

TIP?>tqlclean
TQLADMIN - TQL Control File Administration (95/03/25 2.1 R1 - 0000)
Delete file tqlfiles/tqlmon >NO >YES >END >ALL
Delete file tqlfiles/tqlmon.dbug >NO >YES >END >ALL
Delete file tqlprogs/EDITTST/core >NO >YES >END >ALL
Delete file tqlprogs/TESTING/core >NO >YES >END >ALL
Delete file tqlprogs/TQLTSP/foo.lst >NO >YES >END >ALL
Delete file tqlprogs/TQLTSP/tqlmon.dbug >NO >YES >END >ALL

Clearing Edit Locks

If TQLMON has been terminated abruptly then an invalid edit lock will
remain. This will prevent any further updates even though no one is

TIP Query Language

158 Draft 2.5 - Confidential IP-627

actively making changes any more. The UNLOCK function of TQLADMIN
should be used to remove any invalid edit locks.

Syntax:

TQLADMIN[,options] UNLOCK [, dest]

Where:

options
The following options are accepted:

O Overwrite - Use of this option implies an affirmative
answer to any prompts. There are four possible
replies to the prompts: "NO", "YES", "END" and
"ALL". "END" is the same as "NO" but also stops
any further cleaning. "ALL" is the same as "YES"
and indicates that all further queries are to be
automatically answered "YES".

Q Quiet - Don't output any informational messages
while unlocking.

R Report - Display what actions would be performed
by UNLOCK. No changes are actually made. This
allows for previewing the operations prior to
unlocking.

dest Any valid TIPPRINT destination. The default is ROLL.

The following is the output of a sample UNLOCK run answering all
queries with "YES".

TIP?>TQLADMIN UNLOCK
TQLADMIN - TQL Control File Administration (95/03/25 2.1 R1 - 0000)
Unlock PROGRAM TQLTSP >NO >YES >END >ALL
Unlock RECORD TSPFILE/TQLTSPR >NO >YES >END >ALL

Setting Options in TQLADMIN

TQLADMIN options may be set using two methods. The first is to provide
the options at invocation using the standard TIP method of specifying
options. The second method is to use the SET command. This allows
setting of options after TQLADMIN has started.

In addition, the UNSET command is used to clear an option.

Multiple options may be specified with the SET and UNSET commands
but the options must be specified together without any separator
characters.

Syntax:

SET [option-list]

TQLADMIN - TQL System Administration

9-Jan-2004 Draft 2.5 - Confidential 159

UNSET [option-list]

Where:

option-list
The following options are accepted:

O Overwrite - Use of this option implies an affirmative
answer to any prompts. There are four possible
replies to the prompts: "NO", "YES", "END" and
"ALL". "END" is the same as "NO" but also stops
any further cleaning. "ALL" is the same as "YES"
and indicates that all further queries are to be
automatically answered "YES".

Q Quiet - Don't output any informational messages.
R Report - Display what actions would be performed

by any requested operation.

When specifying multiple options all the options being SET
or UNSET must be specified together without separator
characters (i.e. SET RQ)

If no options are specified for the set command the list of
currently set options will be displayed.

Example:

TQLADMIN(1)>SET R *> set Report option

TQLADMIN(1)>BUILD *> invoke BUILD to find out what will
*> be added
*> BUILD output deleted for clarity

TQLADMIN(1)>UNSET R *> remove Report option

TQLADMIN(1)>BUILD *> invoke BUILD
*> BUILD output deleted for clarity

TQLADMIN(1)>SET OQ *> set Overwrite and Quiet options

TQLADMIN(1)>CLEAN *> invoke CLEAN

Converting Saved Command Files

Since release 2.2 of TIP/ix, TQL can track some extra information for a
saved command. TQL will now track the number of times the command
was recalled, when it was recalled and by whom.

To enable this option the old style saved command file should be updated
and converted to the new format. This is done with the CONVTQL script
located in $TIPROOT/scripts.

TIP Query Language

160 Draft 2.5 - Confidential IP-627

TQL can continue to work with the previous format. It is not necessary to
convert to the new format. However, once converted you will not be able
to convert back.

To convert to the new format you must be at the UNIX prompt. You will
change directories to $TIPROOT/src/tql and enter:

$> tipix –s CONVTQL

This will start TIP and the conversion program. Once running, you may be
prompted with questions which you should answer YES to.

Once the script is finished running, TQL commands that were previously
saved in the file TQLSVE will have been transferred to TQLSVE2 and
have the new features mentioned above.

The saved TQL commands can still be viewed via the TQLSVE program,
which will now reference the TQLSVE2 file.

Exiting TQLADMIN

TQLADMIN will enter command mode if the transaction invoked was
TQLADMIN and not one of the short forms such as TQLCLEAN. Use any
one the following commands to exit from TQLADMIN.

Syntax:

E
END
Q
QUIT
FIN

TQLSVE - TQL Saved File Maintenance

9-Jan-2004 Draft 2.5 - Confidential 161

TQLSVE - TQL Saved File Maintenance
This section describes the saved command maintenance TQL program
TQLSVE. This TQL program is provided for your convenience by Inglenet
Business Solutions and allows for TQL program independent
manipulation of the saved command file. This program is generally used
by the TQL system administrator. The end user should not need to use
this program.

See the TQLRUN RECALL and EXECUTE commands for more details on
using saved commands in a TQL program.

The saved command file is an ISAM file with a sixteen byte key being
comprised of the program name and command identifier. It is logically
defined to TIP as TQLSVE and the record description is defined by the
record SVEREC.

The saved command file is automatically available to the TQL system and
does not depend on installing this TQL program.

Installing TQLSVE
Before the program TQLSVE can be used it must be installed into the
TQL system. This step is usually done by the system administrator at TIP
installation time.

The following commands can be used to install the TQLSVE program if it
has not already been installed.(assumes you at the TIP prompt):

►TQLMON
►AF TQLSVE
►C SVEREC.trd
►CP TQLSVE.tpd

The program is now installed and available for use.

See the TQLMON section for more details on the AF, C and CP
commands used above.

Running TQLSVE

Once the program TQLSVE has been installed in the TQL system it may
be used to view or print the saved commands. See the TQLRUN section
regarding for detailed information on running TQL programs in general
and the runtime command set.

To run TQLSVE enter the following at the TIP prompt:

TIP Query Language

162 Draft 2.5 - Confidential IP-627

►OPEN TQLSVE

TQLSVE has one defined display and one report. The display CMD
shows a saved command and this saved command may be modified
using this display. The report PRTCMD will print all records accordingly to
PRNTR.

Running the display CMD will produce output similar to the following if
there are any saved commands present.

TQL Example Programs

9-Jan-2004 Draft 2.5 - Confidential 163

TQL Example Programs

Inventory/Order Example
This section illustrates many of the features of TQL. The example shows
the file and record definitions for a simple inventory file and associated
order file. The programs illustrated provide the capability to maintain the
inventory file (INV) and the order file (ORD) and to enter orders, change
orders, display orders, print orders etc., while keeping track of inventory.

Inventory File
The inventory file has a logical file name of "INV" in the TIP catalogue and
has the following characteristics:

FILE INV,MIRAM BLKSIZE=500
RECSIZE=50
KEY1=(4,0,NDUP,NCHG)
KEY2=(16,4,DUP,CHG)
KEY3=(2,20,DUP,CHG)
ACCESS=EXCR.
RECORD INVREC
01 INVREC.
05 INV-PART PICTURE 9(4).
05 INV-DESC PICTURE X(16).
05 INV-LOC PICTURE 99.
05 INV-QOH PICTURE 9(5).
05 INV-PRICE PICTURE 9(5)V99.
ALLOW CHANGE ALL.
ALLOW ADD.
ALLOW DELETE.

The primary key of a MIRAM file must not allow duplicates or changes
(TIP restriction).

The primary key is the inventory part number.

This example system also makes use of an order file (logical file name
"ORD") which has the following characteristics:

FILE ORD,MIRAM BLKSIZE=1000
RECSIZE=100
KEY1=(16,0,NDUP,NCHG)
ACCESS=EXCR.

Order File
The order file contains two types of records:

TIP Query Language

164 Draft 2.5 - Confidential IP-627

A header record (one per order).

RECORD ORDHDR
01 ORDHDR.
05 HDR-KEY.
10 HDR-ORD.
15 HDR-CUST PICTURE X(8).
15 HDR-NUM PICTURE 9(4).
10 HDR-LINE PICTURE 9(4).
05 HDR-PO-NUM PICTURE X(8).
05 HDR-LAST-LINE PICTURE 9(4).
ID IS HDR-LINE = 0.
ALLOW CHANGE ALL.
ALLOW ADD.
ALLOW DELETE.

A header record is distinguished by the field HDR-LINE equal to zero.

2. A detail record (one or more per order - representing items ordered):

RECORD ORDDTL
01 ORDDTL.
05 ORD-KEY.
10 ORD-CUST PICTURE X(8).
10 ORD-NUM PICTURE 9(4).
10 ORD-LINE PICTURE 9(4).
05 ORD-PART PICTURE 9(4).
05 ORD-QTY PICTURE 9(4).
ID IS ORD-LINE > 0.
MUST ADD ORD-QTY.
ALLOW CHANGE ALL.
ALLOW ADD.
ALLOW DELETE.

A detail order record (representing on item ordered) is distinguished by
the field ORD-LINE greater than 0. The field is incremented by one for
each item in the order (items 1 through last item).

The following TQL program was written to provide maintenance
capabilities for the inventory file. Two predefined displays are defined by
the program:

"PART " display (all fields) in a single inventory (part) record

"PARTS" display (all fields) in five inventory records.

The screen formats "TF$TQDM1" and "TF$TQDM2" are shown following
the program source.

IDENTIFICATION DIVISION.
PROGRAM-ID. INV 'INVENTORY UPDATE'.

TQL Example Programs

9-Jan-2004 Draft 2.5 - Confidential 165

DATA DIVISION.
FILE INV.
RECORD INVREC.
DISPLAY DIVISION.
PART: READ INVREC
INVREC
USING TF$TQDM1.
PARTS: 5 { READ INVREC
INVREC }
USING TF$TQDM2.

The main processing program (shown below) is used to enter new orders,
perform maintenance operations on existing orders and (in all cases)
adjust the quantity on hand in the inventory file according to the number
of items ordered or returned.

IDENTIFICATION DIVISION.
PROGRAM-ID. ORD.
DATA DIVISION.
FILE ORD.
RECORD ORDHDR.
RECORD ORDDTL.
FILE INV.
RECORD INVREC.
FILE TSPFILE.
RECORD TQLTSPR.

WORKING-STORAGE SECTION.
01 WORK-AREA.
05 TOT-PRICE PIC 9(5)V99.
05 PREV-QTY PIC 9(4).
DECLARATIVES SECTION.
ON READ OF ORDHDR
READ TQLTSPR VIA HDR-CUST.
ON READ OF ORDDTL
MOVE ORD-QTY TO PREV-QTY
READ INVREC VIA ORD-PART.
ON WRITE OF ORDHDR
 READ TQLTSPR VIA HDR-CUST
ON ERROR 'INVALID CUSTOMER #'.
ON WRITE OF ORDDTL
 READ INVREC VIA ORD-PART
ON ERROR 'BAD PART NUM'
 READ TQLTSPR VIA ORD-CUST
ON ERROR 'INVALID CUST #'
MOVE ORD-CUST TO HDR-CUST
MOVE ORD-NUM TO HDR-NUM
MOVE 0 TO HDR-LINE

TIP Query Language

166 Draft 2.5 - Confidential IP-627

READ ORDHDR VIA HDR-KEY
ON ERROR 'MISSING HEADER RECORD'
IF INV-QOH < ORD-QTY
ERROR 'NOT ENOUGH GOODS'
COMPUTE INV-QOH = INV-QOH + PREV-QTY - ORD-
QTY
MOVE ORD-LINE TO HDR-LAST-LINE.
DISPLAY DIVISION.
NEWORDER: READ ORDHDR
HDR-CUST HDR-NUM HDR-PO-NUM
USING TF$TQDM3 ON ENTER ORDER.
ORDER: MOVE HDR-CUST TO ORD-CUST
MOVE HDR-NUM TO ORD-NUM
MOVE HDR-LAST-LINE + 1 TO ORD-LINE
READ ORDDTL
 ORDDTL
 USING TF$TQDM3.
ORDDISP: READ ORDHDR
HDR-CUST HDR-NUM HDR-PO-NUM CM-COMPANY NL$
8 { READ ORDDTL FROM HDR-ORD
ORD-LINE ORD-PART INV-DESC ORD-QTY INV-
PRICE
COMPUTE TOT-PRICE = INV-PRICE * ORD-QTY
TOT-PRICE NL$ }
USING TF$TQDM5.

ORD Program Description
 Whenever an order detail record is read, the number of items ordered

(ORD-QTY) is saved in working-storage field "PREV-QTY". This is
done so that the quantity on hand in inventory can be recalculated if
the detail item is updated (or deleted).

 Whenever an order detail record is written this coding validates the
part number and the customer number according to the data in other
files.

 It also verifies that there is an existing header record for this detail
record.

 If the quantity-on-hand in the INV file (INV-QOH) is not sufficient an
error message is produced ("NOT ENOUGH GOODS")

 Finally, the inventory quantity on hand is recalculated and the
inventory file is updated too.

 The display "NEWORDER" is used to enter a new order. The "ON
ENTER" clause specifies that when the user has entered the data in
screen "TF$TQDM3" he/she is to be taken (in data entry mode) to
pre-defined display "ORDER".

TQL Example Programs

9-Jan-2004 Draft 2.5 - Confidential 167

 The display "ORDER" therefore, is chained to the entry of a new
order.

 The display "ORDER" is used as described above (as a secondary
activity of order entry). It may also be used directly to perform
maintenance activities on order detail records.

 The display "ORDDISP" displays the header information for an order
and displays (on the same screen) up to eight order detail records.

INVOICE Program

The following TQL program was written to generate invoices from the
orders in the order file. A number of sample invoices produced by this
program (using test data) are shown following the program source.

IDENTIFICATION DIVISION.
PROGRAM-ID. INVOICE.
DATA DIVISION.
FILE ORD.
RECORD ORDHDR.
RECORD ORDDTL.
FILE INV.
RECORD INVREC.
FILE TSPFILE.
RECORD TQLTSPR.

WORKING-STORAGE SECTION.
01 WORK-AREA.
05 TOT-PRICE PIC 9(5)V99.
05 GRAND PIC 9(6)V99.
05 TAX PIC 9(6)V99.
05 FINAL PIC 9(6)V99.
05 SUM-TAX PIC 9(7)V99.
05 SUM-DUE PIC 9(7)V99.
05 SUM-GOODS PIC 9(7)V99.
DECLARATIVES SECTION.
ON READ OF ORDHDR
READ TQLTSPR VIA HDR-CUST.
ON READ OF ORDDTL
READ INVREC VIA ORD-PART.
REPORT DIVISION.
INVOICE: READ ORDHDR HOME$
TAB$(10) 'SAMPLE ORDER INVOICE'
SKIP$(4) YY$'/'MON$'/'DD$ NL$ NL$
'CUST # ORD# P.O.# COMPANY NAME' NL$
HDR-CUST ' ' HDR-NUM ' ' HDR-PO-NUM ' ' CM-
COMPANY

TIP Query Language

168 Draft 2.5 - Confidential IP-627

NL$ NL$
' LINE PART# DESCRIPTION'
TAB$(34) 'QUANTITY PRICE TOTAL'
NL$ 50 {READ ORDDTL FROM HDR-ORD
ORD-LINE ' '
ORD-PART ' '
INV-DESC ' '
ORD-QTY ' '
INV-PRICE ' '
COMPUTE TOT-PRICE = INV-PRICE * ORD-QTY
TOT-PRICE
ADD TOT-PRICE TO GRAND NL$} NL$
COMPUTE TAX = GRAND * 0.07
COMPUTE FINAL = GRAND + TAX
TAB$(41) 'TOTAL PRICE ' GRAND NL$
TAB$(41) ' SALES TAX ' TAX NL$
TAB$(41) ' AMOUNT DUE ' FINAL NL$
ADD TAX TO SUM-TAX
ADD FINAL TO SUM-DUE
ADD GRAND TO SUM-GOODS
ON PRNTR
AT END HOME$ NL$ NL$
'TOTAL VALUE OF GOODS SOLD' SUM-GOODS NL$
' TOTAL TAX DUE GOVERNMENT' SUM-TAX NL$
' TOTAL AMOUNT TO COLLECT' SUM-DUE NL$.

The following report was produced by the program INVOICE.

SAMPLE ORDER INVOICE 83/06/01
CUST # ORD# P.O.# COMPANY NAME
COA00000 1 BILL CITY OF ARVADA
LINE PART# DESCRIPTION QUANTITY PRICE TOTAL
1 3 RED SHIRT 4 22.50 90.00
2 1 WHITE SHIRT 1 11.95 11.95
3 3 RED SHIRT 4 22.50 90.00
4 7 THIN TIE 3 2.00 6.00
5 11 NEHRU JACKETS 3 1.95 5.85
TOTAL PRICE 203.80
SALES TAX 14.27
AMOUNT DUE 218.07

===== new page =====

SAMPLE ORDER INVOICE 83/06/01
CUST # ORD# P.O.# COMPANY NAME
GLO00000 1 DAVID GENERAL LAND OFFICE
LINE PART# DESCRIPTION QUANTITY PRICE TOTAL
1 3 RED SHIRT 5 22.50 112.50
2 5 WIDE TIE 8 6.50 52.00

TQL Example Programs

9-Jan-2004 Draft 2.5 - Confidential 169

3 7 THIN TIE 3 2.00 6.00
TOTAL PRICE 374.30
SALES TAX 26.20
AMOUNT DUE 400.50

===== new page =====

SAMPLE ORDER INVOICE 83/06/01
CUST # ORD# P.O.# COMPANY NAME
GLO00000 56 XYZ GENERAL LAND OFFICE
LINE PART# DESCRIPTION QUANTITY PRICE TOTAL
1 5 WIDE TIE 4 6.50 26.00
2 1 WHITE SHIRT 7 11.95 83.65
TOTAL PRICE 483.95
SALES TAX 33.88
AMOUNT DUE 517.83

===== new page =====

TOTAL VALUE OF GOODS SOLD 1062.05
TOTAL TAX DUE GOVERNMENT 74.35
TOTAL AMOUNT TO COLLECT 1136.40

TIP Query Language

170 Draft 2.5 - Confidential IP-627

ANSI COCOL-85 Specifications
The following sections were reproduced for your convenience from:

American National Standard for Information Standards -
Programming Language - COBOL
ANS Institute, New York, 1985.

Qualification

Every user-defined name explicitly referenced in a COBOL source
program must be uniquely referenced because either:

No other name has the identical spelling and hyphenation.

It is unique within the context of a REDEFINES clause.

The name exists within a hierarchy of names such that reference to the
name can be made unique by mentioning one or more of the higher level
names in the hierarchy.

These higher level names are called qualifiers and this process that
specifies uniqueness is called qualification. Identical user-defined names
may appear in a source program; however, uniqueness must then be
established through qualification for each user-defined name explicitly
referenced, except in the case of redefinition. All available qualifiers need
not be specified so long as uniqueness is established. Reserved words
naming the special registers require qualification to provide uniqueness of
reference whenever a source program would result in more than one
occurrence of any of these special registers. A paragraph-name or
section-name appearing in a program may not be referenced from any
other program.

Reference Modification

Function

Reference modification defines a data item by specifying a leftmost
character and length for the data item.

General Format

data-name-1 (leftmost-character-position: [length]

ANSI COCOL-85 Specifications

9-Jan-2004 Draft 2.5 - Confidential 171

Syntax Rules

Data-name-1 must reference a data item whose usage is DISPLAY.

Leftmost-character-position and length must be arithmetic expressions.

Unless otherwise specified, reference modification is allowed anywhere
an identifier referencing a data item of the class alphanumeric is
permitted.

data-name-2 may be qualified or subscripted.

General Rules

Each character of a data item referenced by data-name-1 is assigned an
ordinal number incrementing by one from the leftmost position to the
rightmost position. The leftmost position is assigned the ordinal number
one. If the data description entry for data-name-1 contains a SIGN IS
SEPARATE clause, the sign position is assigned an ordinal number
within that data item.

If the data item referenced by data-name-1 is described as numeric,
numeric edited, alphabetic, or alphanumeric edited, it is operated upon for
purposes of reference modification as if it were redefined as an
alphanumeric data item of the same size as the data item referenced by
data-name-1.

Reference modification for an operand is evaluated as follows:

a) If subscripting is specified for the operand, the reference modification is
evaluated immediately after evaluation of the subscripts.

b) If the subscripting is not specified for the operand, the reference
modification is evaluated at the time subscripting would be evaluated if
subscripts had been specified.

Reference modification creates a unique data item which is a subset of
the data item referenced by data-name-1. This unique data item is
defined as follows:

a) The evaluation of leftmost-character-position specifies the ordinal
position of the leftmost character of the unique data item in relation to the
leftmost character of the data item referenced by data-name-1. Evaluation
of leftmost-character -position must result in a positive non-zero integer
less than of equal to the number of characters in the data item referenced
by data-name-1.

b) The evaluation of length specifies the size of the data item to be used
in the operation. The evaluation of length must result in a positive non-
zero integer. The sum of leftmost-character-position and length minus the
value one must be less than or equal to the number of characters in the
data item referenced by data-name-1. If length is not specified, the unique

TIP Query Language

172 Draft 2.5 - Confidential IP-627

data item extends from and includes the character identified by leftmost-
character-position up to and including the rightmost character of the data
item referenced by data- name-1.

The unique data item is considered an elementary data item without the
JUSTIFIED clause. It has the same class and category as that defined for
the data item referenced by data-name-1 except that the categories
numeric, numeric edited, and alphanumeric edited are considered class
and category alphanumeric.

Identifier

An identifier is a term used to reflect a data-name that, if not unique in a
program, must be followed by a syntactically correct combination of
qualifiers, subscripts, or reference modifiers necessary for uniqueness of
reference.

Index

9-Jan-2004 Draft 2.5 - Confidential 173

Index
Contents ... i

